| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrcccllem.a |
⊢ ( 𝜑 → 𝐴 ∈ Constr ) |
| 3 |
|
constrcccllem.b |
⊢ ( 𝜑 → 𝐵 ∈ Constr ) |
| 4 |
|
constrcccllem.c |
⊢ ( 𝜑 → 𝐺 ∈ Constr ) |
| 5 |
|
constrcccllem.d |
⊢ ( 𝜑 → 𝐷 ∈ Constr ) |
| 6 |
|
constrcccllem.e |
⊢ ( 𝜑 → 𝐸 ∈ Constr ) |
| 7 |
|
constrcccllem.f |
⊢ ( 𝜑 → 𝐹 ∈ Constr ) |
| 8 |
|
constrcccllem.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 9 |
|
constrcccllem.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐷 ) |
| 10 |
|
constrcccllem.2 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ) |
| 11 |
|
constrcccllem.3 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
| 12 |
|
peano2b |
⊢ ( 𝑛 ∈ ω ↔ suc 𝑛 ∈ ω ) |
| 13 |
12
|
biimpi |
⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → suc 𝑛 ∈ ω ) |
| 15 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) ) |
| 16 |
15
|
eleq2d |
⊢ ( 𝑚 = suc 𝑛 → ( 𝑋 ∈ ( 𝐶 ‘ 𝑚 ) ↔ 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑚 = suc 𝑛 ) → ( 𝑋 ∈ ( 𝐶 ‘ 𝑚 ) ↔ 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
| 18 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝑋 ∈ ℂ ) |
| 19 |
|
neeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ≠ 𝑑 ↔ 𝐴 ≠ 𝑑 ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑋 − 𝑎 ) = ( 𝑋 − 𝐴 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑋 − 𝐴 ) ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( 𝑎 = 𝐴 → ( ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ↔ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) ) |
| 23 |
19 22
|
3anbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 24 |
23
|
rexbidv |
⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 25 |
24
|
2rexbidv |
⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 26 |
|
oveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 − 𝑐 ) = ( 𝐵 − 𝑐 ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝑏 = 𝐵 → ( abs ‘ ( 𝑏 − 𝑐 ) ) = ( abs ‘ ( 𝐵 − 𝑐 ) ) ) |
| 28 |
27
|
eqeq2d |
⊢ ( 𝑏 = 𝐵 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ↔ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝑐 ) ) ) ) |
| 29 |
28
|
3anbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 30 |
29
|
rexbidv |
⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 31 |
30
|
2rexbidv |
⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝑐 = 𝐺 → ( 𝐵 − 𝑐 ) = ( 𝐵 − 𝐺 ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝑐 = 𝐺 → ( abs ‘ ( 𝐵 − 𝑐 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ) |
| 34 |
33
|
eqeq2d |
⊢ ( 𝑐 = 𝐺 → ( ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝑐 ) ) ↔ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ) ) |
| 35 |
34
|
3anbi2d |
⊢ ( 𝑐 = 𝐺 → ( ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 36 |
35
|
rexbidv |
⊢ ( 𝑐 = 𝐺 → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 37 |
36
|
2rexbidv |
⊢ ( 𝑐 = 𝐺 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 38 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐴 ∈ Constr ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 40 |
39
|
unssad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → { 𝐴 , 𝐵 , 𝐺 } ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 41 |
38 40
|
tpssad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐴 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 42 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐵 ∈ Constr ) |
| 43 |
42 40
|
tpssbd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐵 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 44 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐺 ∈ Constr ) |
| 45 |
44 40
|
tpsscd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐺 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 46 |
|
neeq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝐴 ≠ 𝑑 ↔ 𝐴 ≠ 𝐷 ) ) |
| 47 |
|
oveq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝑋 − 𝑑 ) = ( 𝑋 − 𝐷 ) ) |
| 48 |
47
|
fveq2d |
⊢ ( 𝑑 = 𝐷 → ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑋 − 𝐷 ) ) ) |
| 49 |
48
|
eqeq1d |
⊢ ( 𝑑 = 𝐷 → ( ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 50 |
46 49
|
3anbi13d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝐴 ≠ 𝐷 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 51 |
|
oveq1 |
⊢ ( 𝑒 = 𝐸 → ( 𝑒 − 𝑓 ) = ( 𝐸 − 𝑓 ) ) |
| 52 |
51
|
fveq2d |
⊢ ( 𝑒 = 𝐸 → ( abs ‘ ( 𝑒 − 𝑓 ) ) = ( abs ‘ ( 𝐸 − 𝑓 ) ) ) |
| 53 |
52
|
eqeq2d |
⊢ ( 𝑒 = 𝐸 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝑓 ) ) ) ) |
| 54 |
53
|
3anbi3d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝐴 ≠ 𝐷 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝐴 ≠ 𝐷 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝑓 ) ) ) ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝐸 − 𝑓 ) = ( 𝐸 − 𝐹 ) ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( abs ‘ ( 𝐸 − 𝑓 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
| 57 |
56
|
eqeq2d |
⊢ ( 𝑓 = 𝐹 → ( ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝑓 ) ) ↔ ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) ) |
| 58 |
57
|
3anbi3d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐴 ≠ 𝐷 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝑓 ) ) ) ↔ ( 𝐴 ≠ 𝐷 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) ) ) |
| 59 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐷 ∈ Constr ) |
| 60 |
39
|
unssbd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → { 𝐷 , 𝐸 , 𝐹 } ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 61 |
59 60
|
tpssad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐷 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 62 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐸 ∈ Constr ) |
| 63 |
62 60
|
tpssbd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐸 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 64 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐹 ∈ Constr ) |
| 65 |
64 60
|
tpsscd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐹 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 66 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐴 ≠ 𝐷 ) |
| 67 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ) |
| 68 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) |
| 69 |
66 67 68
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ( 𝐴 ≠ 𝐷 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝐷 ) ) = ( abs ‘ ( 𝐸 − 𝐹 ) ) ) ) |
| 70 |
50 54 58 61 63 65 69
|
3rspcedvdw |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝐴 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐺 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 71 |
25 31 37 41 43 45 70
|
3rspcedvdw |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 72 |
71
|
3mix3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 73 |
|
nnon |
⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) |
| 74 |
73
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝑛 ∈ On ) |
| 75 |
|
eqid |
⊢ ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) |
| 76 |
1 74 75
|
constrsuc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ( 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( 𝑋 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) ) |
| 77 |
18 72 76
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ) |
| 78 |
14 17 77
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ∃ 𝑚 ∈ ω 𝑋 ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 79 |
1
|
isconstr |
⊢ ( 𝑋 ∈ Constr ↔ ∃ 𝑚 ∈ ω 𝑋 ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 80 |
78 79
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝑋 ∈ Constr ) |
| 81 |
2 3 4
|
tpssd |
⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐺 } ⊆ Constr ) |
| 82 |
5 6 7
|
tpssd |
⊢ ( 𝜑 → { 𝐷 , 𝐸 , 𝐹 } ⊆ Constr ) |
| 83 |
81 82
|
unssd |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ Constr ) |
| 84 |
|
tpfi |
⊢ { 𝐴 , 𝐵 , 𝐺 } ∈ Fin |
| 85 |
84
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐺 } ∈ Fin ) |
| 86 |
|
tpfi |
⊢ { 𝐷 , 𝐸 , 𝐹 } ∈ Fin |
| 87 |
86
|
a1i |
⊢ ( 𝜑 → { 𝐷 , 𝐸 , 𝐹 } ∈ Fin ) |
| 88 |
85 87
|
unfid |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ∈ Fin ) |
| 89 |
1 83 88
|
constrfiss |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ω ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐷 , 𝐸 , 𝐹 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 90 |
80 89
|
r19.29a |
⊢ ( 𝜑 → 𝑋 ∈ Constr ) |