| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrcccllem.a |
|- ( ph -> A e. Constr ) |
| 3 |
|
constrcccllem.b |
|- ( ph -> B e. Constr ) |
| 4 |
|
constrcccllem.c |
|- ( ph -> G e. Constr ) |
| 5 |
|
constrcccllem.d |
|- ( ph -> D e. Constr ) |
| 6 |
|
constrcccllem.e |
|- ( ph -> E e. Constr ) |
| 7 |
|
constrcccllem.f |
|- ( ph -> F e. Constr ) |
| 8 |
|
constrcccllem.x |
|- ( ph -> X e. CC ) |
| 9 |
|
constrcccllem.1 |
|- ( ph -> A =/= D ) |
| 10 |
|
constrcccllem.2 |
|- ( ph -> ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) ) |
| 11 |
|
constrcccllem.3 |
|- ( ph -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) ) |
| 12 |
|
peano2b |
|- ( n e. _om <-> suc n e. _om ) |
| 13 |
12
|
biimpi |
|- ( n e. _om -> suc n e. _om ) |
| 14 |
13
|
ad2antlr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> suc n e. _om ) |
| 15 |
|
fveq2 |
|- ( m = suc n -> ( C ` m ) = ( C ` suc n ) ) |
| 16 |
15
|
eleq2d |
|- ( m = suc n -> ( X e. ( C ` m ) <-> X e. ( C ` suc n ) ) ) |
| 17 |
16
|
adantl |
|- ( ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) /\ m = suc n ) -> ( X e. ( C ` m ) <-> X e. ( C ` suc n ) ) ) |
| 18 |
8
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> X e. CC ) |
| 19 |
|
neeq1 |
|- ( a = A -> ( a =/= d <-> A =/= d ) ) |
| 20 |
|
oveq2 |
|- ( a = A -> ( X - a ) = ( X - A ) ) |
| 21 |
20
|
fveq2d |
|- ( a = A -> ( abs ` ( X - a ) ) = ( abs ` ( X - A ) ) ) |
| 22 |
21
|
eqeq1d |
|- ( a = A -> ( ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) <-> ( abs ` ( X - A ) ) = ( abs ` ( b - c ) ) ) ) |
| 23 |
19 22
|
3anbi12d |
|- ( a = A -> ( ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 24 |
23
|
rexbidv |
|- ( a = A -> ( E. f e. ( C ` n ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 25 |
24
|
2rexbidv |
|- ( a = A -> ( E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 26 |
|
oveq1 |
|- ( b = B -> ( b - c ) = ( B - c ) ) |
| 27 |
26
|
fveq2d |
|- ( b = B -> ( abs ` ( b - c ) ) = ( abs ` ( B - c ) ) ) |
| 28 |
27
|
eqeq2d |
|- ( b = B -> ( ( abs ` ( X - A ) ) = ( abs ` ( b - c ) ) <-> ( abs ` ( X - A ) ) = ( abs ` ( B - c ) ) ) ) |
| 29 |
28
|
3anbi2d |
|- ( b = B -> ( ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 30 |
29
|
rexbidv |
|- ( b = B -> ( E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 31 |
30
|
2rexbidv |
|- ( b = B -> ( E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 32 |
|
oveq2 |
|- ( c = G -> ( B - c ) = ( B - G ) ) |
| 33 |
32
|
fveq2d |
|- ( c = G -> ( abs ` ( B - c ) ) = ( abs ` ( B - G ) ) ) |
| 34 |
33
|
eqeq2d |
|- ( c = G -> ( ( abs ` ( X - A ) ) = ( abs ` ( B - c ) ) <-> ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) ) ) |
| 35 |
34
|
3anbi2d |
|- ( c = G -> ( ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 36 |
35
|
rexbidv |
|- ( c = G -> ( E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 37 |
36
|
2rexbidv |
|- ( c = G -> ( E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 38 |
2
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> A e. Constr ) |
| 39 |
|
simpr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) |
| 40 |
39
|
unssad |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> { A , B , G } C_ ( C ` n ) ) |
| 41 |
38 40
|
tpssad |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> A e. ( C ` n ) ) |
| 42 |
3
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> B e. Constr ) |
| 43 |
42 40
|
tpssbd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> B e. ( C ` n ) ) |
| 44 |
4
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> G e. Constr ) |
| 45 |
44 40
|
tpsscd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> G e. ( C ` n ) ) |
| 46 |
|
neeq2 |
|- ( d = D -> ( A =/= d <-> A =/= D ) ) |
| 47 |
|
oveq2 |
|- ( d = D -> ( X - d ) = ( X - D ) ) |
| 48 |
47
|
fveq2d |
|- ( d = D -> ( abs ` ( X - d ) ) = ( abs ` ( X - D ) ) ) |
| 49 |
48
|
eqeq1d |
|- ( d = D -> ( ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) <-> ( abs ` ( X - D ) ) = ( abs ` ( e - f ) ) ) ) |
| 50 |
46 49
|
3anbi13d |
|- ( d = D -> ( ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) <-> ( A =/= D /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - D ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 51 |
|
oveq1 |
|- ( e = E -> ( e - f ) = ( E - f ) ) |
| 52 |
51
|
fveq2d |
|- ( e = E -> ( abs ` ( e - f ) ) = ( abs ` ( E - f ) ) ) |
| 53 |
52
|
eqeq2d |
|- ( e = E -> ( ( abs ` ( X - D ) ) = ( abs ` ( e - f ) ) <-> ( abs ` ( X - D ) ) = ( abs ` ( E - f ) ) ) ) |
| 54 |
53
|
3anbi3d |
|- ( e = E -> ( ( A =/= D /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - D ) ) = ( abs ` ( e - f ) ) ) <-> ( A =/= D /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - D ) ) = ( abs ` ( E - f ) ) ) ) ) |
| 55 |
|
oveq2 |
|- ( f = F -> ( E - f ) = ( E - F ) ) |
| 56 |
55
|
fveq2d |
|- ( f = F -> ( abs ` ( E - f ) ) = ( abs ` ( E - F ) ) ) |
| 57 |
56
|
eqeq2d |
|- ( f = F -> ( ( abs ` ( X - D ) ) = ( abs ` ( E - f ) ) <-> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) ) ) |
| 58 |
57
|
3anbi3d |
|- ( f = F -> ( ( A =/= D /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - D ) ) = ( abs ` ( E - f ) ) ) <-> ( A =/= D /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) ) ) ) |
| 59 |
5
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> D e. Constr ) |
| 60 |
39
|
unssbd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> { D , E , F } C_ ( C ` n ) ) |
| 61 |
59 60
|
tpssad |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> D e. ( C ` n ) ) |
| 62 |
6
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> E e. Constr ) |
| 63 |
62 60
|
tpssbd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> E e. ( C ` n ) ) |
| 64 |
7
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> F e. Constr ) |
| 65 |
64 60
|
tpsscd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> F e. ( C ` n ) ) |
| 66 |
9
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> A =/= D ) |
| 67 |
10
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) ) |
| 68 |
11
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) ) |
| 69 |
66 67 68
|
3jca |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> ( A =/= D /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - D ) ) = ( abs ` ( E - F ) ) ) ) |
| 70 |
50 54 58 61 63 65 69
|
3rspcedvdw |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( A =/= d /\ ( abs ` ( X - A ) ) = ( abs ` ( B - G ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) |
| 71 |
25 31 37 41 43 45 70
|
3rspcedvdw |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) |
| 72 |
71
|
3mix3d |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> ( E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 73 |
|
nnon |
|- ( n e. _om -> n e. On ) |
| 74 |
73
|
ad2antlr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> n e. On ) |
| 75 |
|
eqid |
|- ( C ` n ) = ( C ` n ) |
| 76 |
1 74 75
|
constrsuc |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> ( X e. ( C ` suc n ) <-> ( X e. CC /\ ( E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) ) ) |
| 77 |
18 72 76
|
mpbir2and |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> X e. ( C ` suc n ) ) |
| 78 |
14 17 77
|
rspcedvd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> E. m e. _om X e. ( C ` m ) ) |
| 79 |
1
|
isconstr |
|- ( X e. Constr <-> E. m e. _om X e. ( C ` m ) ) |
| 80 |
78 79
|
sylibr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) -> X e. Constr ) |
| 81 |
2 3 4
|
tpssd |
|- ( ph -> { A , B , G } C_ Constr ) |
| 82 |
5 6 7
|
tpssd |
|- ( ph -> { D , E , F } C_ Constr ) |
| 83 |
81 82
|
unssd |
|- ( ph -> ( { A , B , G } u. { D , E , F } ) C_ Constr ) |
| 84 |
|
tpfi |
|- { A , B , G } e. Fin |
| 85 |
84
|
a1i |
|- ( ph -> { A , B , G } e. Fin ) |
| 86 |
|
tpfi |
|- { D , E , F } e. Fin |
| 87 |
86
|
a1i |
|- ( ph -> { D , E , F } e. Fin ) |
| 88 |
85 87
|
unfid |
|- ( ph -> ( { A , B , G } u. { D , E , F } ) e. Fin ) |
| 89 |
1 83 88
|
constrfiss |
|- ( ph -> E. n e. _om ( { A , B , G } u. { D , E , F } ) C_ ( C ` n ) ) |
| 90 |
80 89
|
r19.29a |
|- ( ph -> X e. Constr ) |