Step |
Hyp |
Ref |
Expression |
1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
2 |
|
constrsscn.1 |
⊢ ( 𝜑 → 𝑁 ∈ On ) |
3 |
|
constrmon.1 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑁 ) |
4 |
|
eleq2 |
⊢ ( 𝑚 = ∅ → ( 𝑀 ∈ 𝑚 ↔ 𝑀 ∈ ∅ ) ) |
5 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ ∅ ) ) |
6 |
5
|
sseq2d |
⊢ ( 𝑚 = ∅ → ( ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ↔ ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ ∅ ) ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝑚 = ∅ → ( ( 𝑀 ∈ 𝑚 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ) ↔ ( 𝑀 ∈ ∅ → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ ∅ ) ) ) ) |
8 |
|
eleq2w |
⊢ ( 𝑚 = 𝑛 → ( 𝑀 ∈ 𝑚 ↔ 𝑀 ∈ 𝑛 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑛 ) ) |
10 |
9
|
sseq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ↔ ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑀 ∈ 𝑚 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ) ↔ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ) |
12 |
|
eleq2 |
⊢ ( 𝑚 = suc 𝑛 → ( 𝑀 ∈ 𝑚 ↔ 𝑀 ∈ suc 𝑛 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) ) |
14 |
13
|
sseq2d |
⊢ ( 𝑚 = suc 𝑛 → ( ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ↔ ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) ) |
15 |
12 14
|
imbi12d |
⊢ ( 𝑚 = suc 𝑛 → ( ( 𝑀 ∈ 𝑚 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ) ↔ ( 𝑀 ∈ suc 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) ) ) |
16 |
|
eleq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝑀 ∈ 𝑚 ↔ 𝑀 ∈ 𝑁 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑁 ) ) |
18 |
17
|
sseq2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ↔ ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑁 ) ) ) |
19 |
16 18
|
imbi12d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑀 ∈ 𝑚 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ) ↔ ( 𝑀 ∈ 𝑁 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑁 ) ) ) ) |
20 |
|
noel |
⊢ ¬ 𝑀 ∈ ∅ |
21 |
20
|
pm2.21i |
⊢ ( 𝑀 ∈ ∅ → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ ∅ ) ) |
22 |
|
simpllr |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 ∈ 𝑛 ) → ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
23 |
22
|
syldbl2 |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 ∈ 𝑛 ) → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) |
24 |
|
simplll |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 ∈ 𝑛 ) → 𝑛 ∈ On ) |
25 |
1 24
|
constrss |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 ∈ 𝑛 ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) |
26 |
23 25
|
sstrd |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 ∈ 𝑛 ) → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) |
27 |
|
simpr |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → 𝑀 = 𝑛 ) |
28 |
27
|
fveq2d |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → ( 𝐶 ‘ 𝑀 ) = ( 𝐶 ‘ 𝑛 ) ) |
29 |
|
simplll |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → 𝑛 ∈ On ) |
30 |
1 29
|
constrss |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) |
31 |
28 30
|
eqsstrd |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) |
32 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) → 𝑀 ∈ suc 𝑛 ) |
33 |
|
elsuci |
⊢ ( 𝑀 ∈ suc 𝑛 → ( 𝑀 ∈ 𝑛 ∨ 𝑀 = 𝑛 ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) → ( 𝑀 ∈ 𝑛 ∨ 𝑀 = 𝑛 ) ) |
35 |
26 31 34
|
mpjaodan |
⊢ ( ( ( 𝑛 ∈ On ∧ ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) |
36 |
35
|
exp31 |
⊢ ( 𝑛 ∈ On → ( ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ( 𝑀 ∈ suc 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝐶 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑀 ) ) |
38 |
37
|
sseq2d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑖 ) ↔ ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑀 ) ) ) |
39 |
|
simpr |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ 𝑚 ) → 𝑀 ∈ 𝑚 ) |
40 |
|
ssidd |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ 𝑚 ) → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑀 ) ) |
41 |
38 39 40
|
rspcedvdw |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ 𝑚 ) → ∃ 𝑖 ∈ 𝑚 ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑖 ) ) |
42 |
|
ssiun |
⊢ ( ∃ 𝑖 ∈ 𝑚 ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑖 ) → ( 𝐶 ‘ 𝑀 ) ⊆ ∪ 𝑖 ∈ 𝑚 ( 𝐶 ‘ 𝑖 ) ) |
43 |
41 42
|
syl |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ 𝑚 ) → ( 𝐶 ‘ 𝑀 ) ⊆ ∪ 𝑖 ∈ 𝑚 ( 𝐶 ‘ 𝑖 ) ) |
44 |
|
vex |
⊢ 𝑚 ∈ V |
45 |
44
|
a1i |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ 𝑚 ) → 𝑚 ∈ V ) |
46 |
|
simpll |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ 𝑚 ) → Lim 𝑚 ) |
47 |
1 45 46
|
constrlim |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ 𝑚 ) → ( 𝐶 ‘ 𝑚 ) = ∪ 𝑖 ∈ 𝑚 ( 𝐶 ‘ 𝑖 ) ) |
48 |
43 47
|
sseqtrrd |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) ∧ 𝑀 ∈ 𝑚 ) → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ) |
49 |
48
|
exp31 |
⊢ ( Lim 𝑚 → ( ∀ 𝑛 ∈ 𝑚 ( 𝑀 ∈ 𝑛 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) → ( 𝑀 ∈ 𝑚 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑚 ) ) ) ) |
50 |
7 11 15 19 21 36 49
|
tfinds |
⊢ ( 𝑁 ∈ On → ( 𝑀 ∈ 𝑁 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑁 ) ) ) |
51 |
2 3 50
|
sylc |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑀 ) ⊆ ( 𝐶 ‘ 𝑁 ) ) |