Metamath Proof Explorer


Theorem constrmon

Description: The construction of constructible numbers is monotonous, i.e. if the ordinal M is less than the ordinal N , which is denoted by M e. N , then the M -th step of the constructible numbers is included in the N -th step. (Contributed by Thierry Arnoux, 1-Jul-2025)

Ref Expression
Hypotheses constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
constrsscn.1 ( 𝜑𝑁 ∈ On )
constrmon.1 ( 𝜑𝑀𝑁 )
Assertion constrmon ( 𝜑 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑁 ) )

Proof

Step Hyp Ref Expression
1 constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
2 constrsscn.1 ( 𝜑𝑁 ∈ On )
3 constrmon.1 ( 𝜑𝑀𝑁 )
4 eleq2 ( 𝑚 = ∅ → ( 𝑀𝑚𝑀 ∈ ∅ ) )
5 fveq2 ( 𝑚 = ∅ → ( 𝐶𝑚 ) = ( 𝐶 ‘ ∅ ) )
6 5 sseq2d ( 𝑚 = ∅ → ( ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) ↔ ( 𝐶𝑀 ) ⊆ ( 𝐶 ‘ ∅ ) ) )
7 4 6 imbi12d ( 𝑚 = ∅ → ( ( 𝑀𝑚 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) ) ↔ ( 𝑀 ∈ ∅ → ( 𝐶𝑀 ) ⊆ ( 𝐶 ‘ ∅ ) ) ) )
8 eleq2w ( 𝑚 = 𝑛 → ( 𝑀𝑚𝑀𝑛 ) )
9 fveq2 ( 𝑚 = 𝑛 → ( 𝐶𝑚 ) = ( 𝐶𝑛 ) )
10 9 sseq2d ( 𝑚 = 𝑛 → ( ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) ↔ ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) )
11 8 10 imbi12d ( 𝑚 = 𝑛 → ( ( 𝑀𝑚 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) ) ↔ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) )
12 eleq2 ( 𝑚 = suc 𝑛 → ( 𝑀𝑚𝑀 ∈ suc 𝑛 ) )
13 fveq2 ( 𝑚 = suc 𝑛 → ( 𝐶𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) )
14 13 sseq2d ( 𝑚 = suc 𝑛 → ( ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) ↔ ( 𝐶𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) )
15 12 14 imbi12d ( 𝑚 = suc 𝑛 → ( ( 𝑀𝑚 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) ) ↔ ( 𝑀 ∈ suc 𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) ) )
16 eleq2 ( 𝑚 = 𝑁 → ( 𝑀𝑚𝑀𝑁 ) )
17 fveq2 ( 𝑚 = 𝑁 → ( 𝐶𝑚 ) = ( 𝐶𝑁 ) )
18 17 sseq2d ( 𝑚 = 𝑁 → ( ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) ↔ ( 𝐶𝑀 ) ⊆ ( 𝐶𝑁 ) ) )
19 16 18 imbi12d ( 𝑚 = 𝑁 → ( ( 𝑀𝑚 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) ) ↔ ( 𝑀𝑁 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑁 ) ) ) )
20 noel ¬ 𝑀 ∈ ∅
21 20 pm2.21i ( 𝑀 ∈ ∅ → ( 𝐶𝑀 ) ⊆ ( 𝐶 ‘ ∅ ) )
22 simpllr ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀𝑛 ) → ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) )
23 22 syldbl2 ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀𝑛 ) → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) )
24 simplll ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀𝑛 ) → 𝑛 ∈ On )
25 1 24 constrss ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀𝑛 ) → ( 𝐶𝑛 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) )
26 23 25 sstrd ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀𝑛 ) → ( 𝐶𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) )
27 simpr ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → 𝑀 = 𝑛 )
28 27 fveq2d ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → ( 𝐶𝑀 ) = ( 𝐶𝑛 ) )
29 simplll ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → 𝑛 ∈ On )
30 1 29 constrss ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → ( 𝐶𝑛 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) )
31 28 30 eqsstrd ( ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) ∧ 𝑀 = 𝑛 ) → ( 𝐶𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) )
32 simpr ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) → 𝑀 ∈ suc 𝑛 )
33 elsuci ( 𝑀 ∈ suc 𝑛 → ( 𝑀𝑛𝑀 = 𝑛 ) )
34 32 33 syl ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) → ( 𝑀𝑛𝑀 = 𝑛 ) )
35 26 31 34 mpjaodan ( ( ( 𝑛 ∈ On ∧ ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀 ∈ suc 𝑛 ) → ( 𝐶𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) )
36 35 exp31 ( 𝑛 ∈ On → ( ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) → ( 𝑀 ∈ suc 𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) ) )
37 fveq2 ( 𝑖 = 𝑀 → ( 𝐶𝑖 ) = ( 𝐶𝑀 ) )
38 37 sseq2d ( 𝑖 = 𝑀 → ( ( 𝐶𝑀 ) ⊆ ( 𝐶𝑖 ) ↔ ( 𝐶𝑀 ) ⊆ ( 𝐶𝑀 ) ) )
39 simpr ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚 ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀𝑚 ) → 𝑀𝑚 )
40 ssidd ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚 ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀𝑚 ) → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑀 ) )
41 38 39 40 rspcedvdw ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚 ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀𝑚 ) → ∃ 𝑖𝑚 ( 𝐶𝑀 ) ⊆ ( 𝐶𝑖 ) )
42 ssiun ( ∃ 𝑖𝑚 ( 𝐶𝑀 ) ⊆ ( 𝐶𝑖 ) → ( 𝐶𝑀 ) ⊆ 𝑖𝑚 ( 𝐶𝑖 ) )
43 41 42 syl ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚 ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀𝑚 ) → ( 𝐶𝑀 ) ⊆ 𝑖𝑚 ( 𝐶𝑖 ) )
44 vex 𝑚 ∈ V
45 44 a1i ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚 ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀𝑚 ) → 𝑚 ∈ V )
46 simpll ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚 ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀𝑚 ) → Lim 𝑚 )
47 1 45 46 constrlim ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚 ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀𝑚 ) → ( 𝐶𝑚 ) = 𝑖𝑚 ( 𝐶𝑖 ) )
48 43 47 sseqtrrd ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚 ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) ) ∧ 𝑀𝑚 ) → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) )
49 48 exp31 ( Lim 𝑚 → ( ∀ 𝑛𝑚 ( 𝑀𝑛 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑛 ) ) → ( 𝑀𝑚 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑚 ) ) ) )
50 7 11 15 19 21 36 49 tfinds ( 𝑁 ∈ On → ( 𝑀𝑁 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑁 ) ) )
51 2 3 50 sylc ( 𝜑 → ( 𝐶𝑀 ) ⊆ ( 𝐶𝑁 ) )