Description: Constructed points are in the next generation constructed points. (Contributed by Thierry Arnoux, 25-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | constr0.1 | ⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) | |
| constrsscn.1 | ⊢ ( 𝜑 → 𝑁 ∈ On ) | ||
| Assertion | constrss | ⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) ⊆ ( 𝐶 ‘ suc 𝑁 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | constr0.1 | ⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) | |
| 2 | constrsscn.1 | ⊢ ( 𝜑 → 𝑁 ∈ On ) | |
| 3 | 1 2 | constr01 | ⊢ ( 𝜑 → { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑁 ) ) | 
| 4 | c0ex | ⊢ 0 ∈ V | |
| 5 | 4 | prid1 | ⊢ 0 ∈ { 0 , 1 } | 
| 6 | 5 | a1i | ⊢ ( 𝜑 → 0 ∈ { 0 , 1 } ) | 
| 7 | 3 6 | sseldd | ⊢ ( 𝜑 → 0 ∈ ( 𝐶 ‘ 𝑁 ) ) | 
| 8 | 1 2 7 | constrsslem | ⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) ⊆ ( 𝐶 ‘ suc 𝑁 ) ) |