Description: Constructed points are in the next generation constructed points. (Contributed by Thierry Arnoux, 25-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | constr0.1 | |- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
|
constrsscn.1 | |- ( ph -> N e. On ) |
||
Assertion | constrss | |- ( ph -> ( C ` N ) C_ ( C ` suc N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | constr0.1 | |- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
|
2 | constrsscn.1 | |- ( ph -> N e. On ) |
|
3 | 1 2 | constr01 | |- ( ph -> { 0 , 1 } C_ ( C ` N ) ) |
4 | c0ex | |- 0 e. _V |
|
5 | 4 | prid1 | |- 0 e. { 0 , 1 } |
6 | 5 | a1i | |- ( ph -> 0 e. { 0 , 1 } ) |
7 | 3 6 | sseldd | |- ( ph -> 0 e. ( C ` N ) ) |
8 | 1 2 7 | constrsslem | |- ( ph -> ( C ` N ) C_ ( C ` suc N ) ) |