| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrsscn.1 |
|- ( ph -> N e. On ) |
| 3 |
|
constrsslem.1 |
|- ( ph -> 0 e. ( C ` N ) ) |
| 4 |
1 2
|
constrsscn |
|- ( ph -> ( C ` N ) C_ CC ) |
| 5 |
4
|
sselda |
|- ( ( ph /\ x e. ( C ` N ) ) -> x e. CC ) |
| 6 |
|
simpr |
|- ( ( ph /\ x e. ( C ` N ) ) -> x e. ( C ` N ) ) |
| 7 |
|
id |
|- ( a = x -> a = x ) |
| 8 |
|
oveq2 |
|- ( a = x -> ( b - a ) = ( b - x ) ) |
| 9 |
8
|
oveq2d |
|- ( a = x -> ( t x. ( b - a ) ) = ( t x. ( b - x ) ) ) |
| 10 |
7 9
|
oveq12d |
|- ( a = x -> ( a + ( t x. ( b - a ) ) ) = ( x + ( t x. ( b - x ) ) ) ) |
| 11 |
10
|
eqeq2d |
|- ( a = x -> ( x = ( a + ( t x. ( b - a ) ) ) <-> x = ( x + ( t x. ( b - x ) ) ) ) ) |
| 12 |
11
|
anbi1d |
|- ( a = x -> ( ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 13 |
12
|
rexbidv |
|- ( a = x -> ( E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 14 |
13
|
2rexbidv |
|- ( a = x -> ( E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 15 |
14
|
2rexbidv |
|- ( a = x -> ( E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ a = x ) -> ( E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 17 |
3
|
adantr |
|- ( ( ph /\ x e. ( C ` N ) ) -> 0 e. ( C ` N ) ) |
| 18 |
|
oveq1 |
|- ( b = 0 -> ( b - x ) = ( 0 - x ) ) |
| 19 |
18
|
oveq2d |
|- ( b = 0 -> ( t x. ( b - x ) ) = ( t x. ( 0 - x ) ) ) |
| 20 |
19
|
oveq2d |
|- ( b = 0 -> ( x + ( t x. ( b - x ) ) ) = ( x + ( t x. ( 0 - x ) ) ) ) |
| 21 |
20
|
eqeq2d |
|- ( b = 0 -> ( x = ( x + ( t x. ( b - x ) ) ) <-> x = ( x + ( t x. ( 0 - x ) ) ) ) ) |
| 22 |
21
|
anbi1d |
|- ( b = 0 -> ( ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 23 |
22
|
2rexbidv |
|- ( b = 0 -> ( E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 24 |
23
|
2rexbidv |
|- ( b = 0 -> ( E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 25 |
24
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ b = 0 ) -> ( E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 26 |
|
oveq2 |
|- ( c = 0 -> ( x - c ) = ( x - 0 ) ) |
| 27 |
26
|
fveq2d |
|- ( c = 0 -> ( abs ` ( x - c ) ) = ( abs ` ( x - 0 ) ) ) |
| 28 |
27
|
eqeq1d |
|- ( c = 0 -> ( ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) <-> ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) |
| 29 |
28
|
anbi2d |
|- ( c = 0 -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 30 |
29
|
rexbidv |
|- ( c = 0 -> ( E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 31 |
30
|
2rexbidv |
|- ( c = 0 -> ( E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 32 |
31
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ c = 0 ) -> ( E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 33 |
|
oveq1 |
|- ( e = x -> ( e - f ) = ( x - f ) ) |
| 34 |
33
|
fveq2d |
|- ( e = x -> ( abs ` ( e - f ) ) = ( abs ` ( x - f ) ) ) |
| 35 |
34
|
eqeq2d |
|- ( e = x -> ( ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) <-> ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) |
| 36 |
35
|
anbi2d |
|- ( e = x -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) <-> ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) ) |
| 37 |
36
|
2rexbidv |
|- ( e = x -> ( E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) <-> E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) ) |
| 38 |
37
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ e = x ) -> ( E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) <-> E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) ) |
| 39 |
|
oveq2 |
|- ( f = 0 -> ( x - f ) = ( x - 0 ) ) |
| 40 |
39
|
fveq2d |
|- ( f = 0 -> ( abs ` ( x - f ) ) = ( abs ` ( x - 0 ) ) ) |
| 41 |
40
|
eqeq2d |
|- ( f = 0 -> ( ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) <-> ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) |
| 42 |
41
|
anbi2d |
|- ( f = 0 -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) <-> ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
| 43 |
42
|
rexbidv |
|- ( f = 0 -> ( E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) <-> E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
| 44 |
43
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ f = 0 ) -> ( E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) <-> E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
| 45 |
|
0red |
|- ( ( ph /\ x e. ( C ` N ) ) -> 0 e. RR ) |
| 46 |
|
oveq1 |
|- ( t = 0 -> ( t x. ( 0 - x ) ) = ( 0 x. ( 0 - x ) ) ) |
| 47 |
46
|
oveq2d |
|- ( t = 0 -> ( x + ( t x. ( 0 - x ) ) ) = ( x + ( 0 x. ( 0 - x ) ) ) ) |
| 48 |
47
|
eqeq2d |
|- ( t = 0 -> ( x = ( x + ( t x. ( 0 - x ) ) ) <-> x = ( x + ( 0 x. ( 0 - x ) ) ) ) ) |
| 49 |
48
|
anbi1d |
|- ( t = 0 -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) <-> ( x = ( x + ( 0 x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
| 50 |
49
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ t = 0 ) -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) <-> ( x = ( x + ( 0 x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
| 51 |
|
0cnd |
|- ( ( ph /\ x e. ( C ` N ) ) -> 0 e. CC ) |
| 52 |
51 5
|
subcld |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( 0 - x ) e. CC ) |
| 53 |
52
|
mul02d |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( 0 x. ( 0 - x ) ) = 0 ) |
| 54 |
53
|
oveq2d |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( x + ( 0 x. ( 0 - x ) ) ) = ( x + 0 ) ) |
| 55 |
5
|
addridd |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( x + 0 ) = x ) |
| 56 |
54 55
|
eqtr2d |
|- ( ( ph /\ x e. ( C ` N ) ) -> x = ( x + ( 0 x. ( 0 - x ) ) ) ) |
| 57 |
|
eqidd |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) |
| 58 |
56 57
|
jca |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( x = ( x + ( 0 x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) |
| 59 |
45 50 58
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) |
| 60 |
17 44 59
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) |
| 61 |
6 38 60
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) |
| 62 |
17 32 61
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) |
| 63 |
17 25 62
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) |
| 64 |
6 16 63
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) |
| 65 |
64
|
3mix2d |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 66 |
|
eqid |
|- ( C ` N ) = ( C ` N ) |
| 67 |
1 2 66
|
constrsuc |
|- ( ph -> ( x e. ( C ` suc N ) <-> ( x e. CC /\ ( E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) ) ) ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( x e. ( C ` suc N ) <-> ( x e. CC /\ ( E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) ) ) ) |
| 69 |
5 65 68
|
mpbir2and |
|- ( ( ph /\ x e. ( C ` N ) ) -> x e. ( C ` suc N ) ) |
| 70 |
69
|
ex |
|- ( ph -> ( x e. ( C ` N ) -> x e. ( C ` suc N ) ) ) |
| 71 |
70
|
ssrdv |
|- ( ph -> ( C ` N ) C_ ( C ` suc N ) ) |