Step |
Hyp |
Ref |
Expression |
1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
2 |
|
constrsscn.1 |
|- ( ph -> N e. On ) |
3 |
|
constrsslem.1 |
|- ( ph -> 0 e. ( C ` N ) ) |
4 |
1 2
|
constrsscn |
|- ( ph -> ( C ` N ) C_ CC ) |
5 |
4
|
sselda |
|- ( ( ph /\ x e. ( C ` N ) ) -> x e. CC ) |
6 |
|
simpr |
|- ( ( ph /\ x e. ( C ` N ) ) -> x e. ( C ` N ) ) |
7 |
|
id |
|- ( a = x -> a = x ) |
8 |
|
oveq2 |
|- ( a = x -> ( b - a ) = ( b - x ) ) |
9 |
8
|
oveq2d |
|- ( a = x -> ( t x. ( b - a ) ) = ( t x. ( b - x ) ) ) |
10 |
7 9
|
oveq12d |
|- ( a = x -> ( a + ( t x. ( b - a ) ) ) = ( x + ( t x. ( b - x ) ) ) ) |
11 |
10
|
eqeq2d |
|- ( a = x -> ( x = ( a + ( t x. ( b - a ) ) ) <-> x = ( x + ( t x. ( b - x ) ) ) ) ) |
12 |
11
|
anbi1d |
|- ( a = x -> ( ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
13 |
12
|
rexbidv |
|- ( a = x -> ( E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
14 |
13
|
2rexbidv |
|- ( a = x -> ( E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
15 |
14
|
2rexbidv |
|- ( a = x -> ( E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
16 |
15
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ a = x ) -> ( E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
17 |
3
|
adantr |
|- ( ( ph /\ x e. ( C ` N ) ) -> 0 e. ( C ` N ) ) |
18 |
|
oveq1 |
|- ( b = 0 -> ( b - x ) = ( 0 - x ) ) |
19 |
18
|
oveq2d |
|- ( b = 0 -> ( t x. ( b - x ) ) = ( t x. ( 0 - x ) ) ) |
20 |
19
|
oveq2d |
|- ( b = 0 -> ( x + ( t x. ( b - x ) ) ) = ( x + ( t x. ( 0 - x ) ) ) ) |
21 |
20
|
eqeq2d |
|- ( b = 0 -> ( x = ( x + ( t x. ( b - x ) ) ) <-> x = ( x + ( t x. ( 0 - x ) ) ) ) ) |
22 |
21
|
anbi1d |
|- ( b = 0 -> ( ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
23 |
22
|
2rexbidv |
|- ( b = 0 -> ( E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
24 |
23
|
2rexbidv |
|- ( b = 0 -> ( E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
25 |
24
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ b = 0 ) -> ( E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
26 |
|
oveq2 |
|- ( c = 0 -> ( x - c ) = ( x - 0 ) ) |
27 |
26
|
fveq2d |
|- ( c = 0 -> ( abs ` ( x - c ) ) = ( abs ` ( x - 0 ) ) ) |
28 |
27
|
eqeq1d |
|- ( c = 0 -> ( ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) <-> ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) |
29 |
28
|
anbi2d |
|- ( c = 0 -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) ) |
30 |
29
|
rexbidv |
|- ( c = 0 -> ( E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) ) |
31 |
30
|
2rexbidv |
|- ( c = 0 -> ( E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) ) |
32 |
31
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ c = 0 ) -> ( E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) <-> E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) ) |
33 |
|
oveq1 |
|- ( e = x -> ( e - f ) = ( x - f ) ) |
34 |
33
|
fveq2d |
|- ( e = x -> ( abs ` ( e - f ) ) = ( abs ` ( x - f ) ) ) |
35 |
34
|
eqeq2d |
|- ( e = x -> ( ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) <-> ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) |
36 |
35
|
anbi2d |
|- ( e = x -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) <-> ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) ) |
37 |
36
|
2rexbidv |
|- ( e = x -> ( E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) <-> E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) ) |
38 |
37
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ e = x ) -> ( E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) <-> E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) ) |
39 |
|
oveq2 |
|- ( f = 0 -> ( x - f ) = ( x - 0 ) ) |
40 |
39
|
fveq2d |
|- ( f = 0 -> ( abs ` ( x - f ) ) = ( abs ` ( x - 0 ) ) ) |
41 |
40
|
eqeq2d |
|- ( f = 0 -> ( ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) <-> ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) |
42 |
41
|
anbi2d |
|- ( f = 0 -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) <-> ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
43 |
42
|
rexbidv |
|- ( f = 0 -> ( E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) <-> E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
44 |
43
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ f = 0 ) -> ( E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) <-> E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
45 |
|
0red |
|- ( ( ph /\ x e. ( C ` N ) ) -> 0 e. RR ) |
46 |
|
oveq1 |
|- ( t = 0 -> ( t x. ( 0 - x ) ) = ( 0 x. ( 0 - x ) ) ) |
47 |
46
|
oveq2d |
|- ( t = 0 -> ( x + ( t x. ( 0 - x ) ) ) = ( x + ( 0 x. ( 0 - x ) ) ) ) |
48 |
47
|
eqeq2d |
|- ( t = 0 -> ( x = ( x + ( t x. ( 0 - x ) ) ) <-> x = ( x + ( 0 x. ( 0 - x ) ) ) ) ) |
49 |
48
|
anbi1d |
|- ( t = 0 -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) <-> ( x = ( x + ( 0 x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
50 |
49
|
adantl |
|- ( ( ( ph /\ x e. ( C ` N ) ) /\ t = 0 ) -> ( ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) <-> ( x = ( x + ( 0 x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) ) |
51 |
|
0cnd |
|- ( ( ph /\ x e. ( C ` N ) ) -> 0 e. CC ) |
52 |
51 5
|
subcld |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( 0 - x ) e. CC ) |
53 |
52
|
mul02d |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( 0 x. ( 0 - x ) ) = 0 ) |
54 |
53
|
oveq2d |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( x + ( 0 x. ( 0 - x ) ) ) = ( x + 0 ) ) |
55 |
5
|
addridd |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( x + 0 ) = x ) |
56 |
54 55
|
eqtr2d |
|- ( ( ph /\ x e. ( C ` N ) ) -> x = ( x + ( 0 x. ( 0 - x ) ) ) ) |
57 |
|
eqidd |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) |
58 |
56 57
|
jca |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( x = ( x + ( 0 x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) |
59 |
45 50 58
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - 0 ) ) ) ) |
60 |
17 44 59
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( x - f ) ) ) ) |
61 |
6 38 60
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - 0 ) ) = ( abs ` ( e - f ) ) ) ) |
62 |
17 32 61
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( 0 - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) |
63 |
17 25 62
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( x + ( t x. ( b - x ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) |
64 |
6 16 63
|
rspcedvd |
|- ( ( ph /\ x e. ( C ` N ) ) -> E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) ) |
65 |
64
|
3mix2d |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
66 |
|
eqid |
|- ( C ` N ) = ( C ` N ) |
67 |
1 2 66
|
constrsuc |
|- ( ph -> ( x e. ( C ` suc N ) <-> ( x e. CC /\ ( E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) ) ) ) |
68 |
67
|
adantr |
|- ( ( ph /\ x e. ( C ` N ) ) -> ( x e. ( C ` suc N ) <-> ( x e. CC /\ ( E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) ) ) ) |
69 |
5 65 68
|
mpbir2and |
|- ( ( ph /\ x e. ( C ` N ) ) -> x e. ( C ` suc N ) ) |
70 |
69
|
ex |
|- ( ph -> ( x e. ( C ` N ) -> x e. ( C ` suc N ) ) ) |
71 |
70
|
ssrdv |
|- ( ph -> ( C ` N ) C_ ( C ` suc N ) ) |