Metamath Proof Explorer


Theorem constrsslem

Description: Lemma for constrss . This lemma requires the additional condition that 0 is the constructible number; that condition is removed in constrss . (Proposed by Saveliy Skresanov, 23-JUn-2025.) (Contributed by Thierry Arnoux, 25-Jun-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrsscn.1 φ N On
constrsslem.1 φ 0 C N
Assertion constrsslem φ C N C suc N

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrsscn.1 φ N On
3 constrsslem.1 φ 0 C N
4 1 2 constrsscn φ C N
5 4 sselda φ x C N x
6 simpr φ x C N x C N
7 id a = x a = x
8 oveq2 a = x b a = b x
9 8 oveq2d a = x t b a = t b x
10 7 9 oveq12d a = x a + t b a = x + t b x
11 10 eqeq2d a = x x = a + t b a x = x + t b x
12 11 anbi1d a = x x = a + t b a x c = e f x = x + t b x x c = e f
13 12 rexbidv a = x t x = a + t b a x c = e f t x = x + t b x x c = e f
14 13 2rexbidv a = x e C N f C N t x = a + t b a x c = e f e C N f C N t x = x + t b x x c = e f
15 14 2rexbidv a = x b C N c C N e C N f C N t x = a + t b a x c = e f b C N c C N e C N f C N t x = x + t b x x c = e f
16 15 adantl φ x C N a = x b C N c C N e C N f C N t x = a + t b a x c = e f b C N c C N e C N f C N t x = x + t b x x c = e f
17 3 adantr φ x C N 0 C N
18 oveq1 b = 0 b x = 0 x
19 18 oveq2d b = 0 t b x = t 0 x
20 19 oveq2d b = 0 x + t b x = x + t 0 x
21 20 eqeq2d b = 0 x = x + t b x x = x + t 0 x
22 21 anbi1d b = 0 x = x + t b x x c = e f x = x + t 0 x x c = e f
23 22 2rexbidv b = 0 f C N t x = x + t b x x c = e f f C N t x = x + t 0 x x c = e f
24 23 2rexbidv b = 0 c C N e C N f C N t x = x + t b x x c = e f c C N e C N f C N t x = x + t 0 x x c = e f
25 24 adantl φ x C N b = 0 c C N e C N f C N t x = x + t b x x c = e f c C N e C N f C N t x = x + t 0 x x c = e f
26 oveq2 c = 0 x c = x 0
27 26 fveq2d c = 0 x c = x 0
28 27 eqeq1d c = 0 x c = e f x 0 = e f
29 28 anbi2d c = 0 x = x + t 0 x x c = e f x = x + t 0 x x 0 = e f
30 29 rexbidv c = 0 t x = x + t 0 x x c = e f t x = x + t 0 x x 0 = e f
31 30 2rexbidv c = 0 e C N f C N t x = x + t 0 x x c = e f e C N f C N t x = x + t 0 x x 0 = e f
32 31 adantl φ x C N c = 0 e C N f C N t x = x + t 0 x x c = e f e C N f C N t x = x + t 0 x x 0 = e f
33 oveq1 e = x e f = x f
34 33 fveq2d e = x e f = x f
35 34 eqeq2d e = x x 0 = e f x 0 = x f
36 35 anbi2d e = x x = x + t 0 x x 0 = e f x = x + t 0 x x 0 = x f
37 36 2rexbidv e = x f C N t x = x + t 0 x x 0 = e f f C N t x = x + t 0 x x 0 = x f
38 37 adantl φ x C N e = x f C N t x = x + t 0 x x 0 = e f f C N t x = x + t 0 x x 0 = x f
39 oveq2 f = 0 x f = x 0
40 39 fveq2d f = 0 x f = x 0
41 40 eqeq2d f = 0 x 0 = x f x 0 = x 0
42 41 anbi2d f = 0 x = x + t 0 x x 0 = x f x = x + t 0 x x 0 = x 0
43 42 rexbidv f = 0 t x = x + t 0 x x 0 = x f t x = x + t 0 x x 0 = x 0
44 43 adantl φ x C N f = 0 t x = x + t 0 x x 0 = x f t x = x + t 0 x x 0 = x 0
45 0red φ x C N 0
46 oveq1 t = 0 t 0 x = 0 0 x
47 46 oveq2d t = 0 x + t 0 x = x + 0 0 x
48 47 eqeq2d t = 0 x = x + t 0 x x = x + 0 0 x
49 48 anbi1d t = 0 x = x + t 0 x x 0 = x 0 x = x + 0 0 x x 0 = x 0
50 49 adantl φ x C N t = 0 x = x + t 0 x x 0 = x 0 x = x + 0 0 x x 0 = x 0
51 0cnd φ x C N 0
52 51 5 subcld φ x C N 0 x
53 52 mul02d φ x C N 0 0 x = 0
54 53 oveq2d φ x C N x + 0 0 x = x + 0
55 5 addridd φ x C N x + 0 = x
56 54 55 eqtr2d φ x C N x = x + 0 0 x
57 eqidd φ x C N x 0 = x 0
58 56 57 jca φ x C N x = x + 0 0 x x 0 = x 0
59 45 50 58 rspcedvd φ x C N t x = x + t 0 x x 0 = x 0
60 17 44 59 rspcedvd φ x C N f C N t x = x + t 0 x x 0 = x f
61 6 38 60 rspcedvd φ x C N e C N f C N t x = x + t 0 x x 0 = e f
62 17 32 61 rspcedvd φ x C N c C N e C N f C N t x = x + t 0 x x c = e f
63 17 25 62 rspcedvd φ x C N b C N c C N e C N f C N t x = x + t b x x c = e f
64 6 16 63 rspcedvd φ x C N a C N b C N c C N e C N f C N t x = a + t b a x c = e f
65 64 3mix2d φ x C N a C N b C N c C N d C N t r x = a + t b a x = c + r d c b a d c 0 a C N b C N c C N e C N f C N t x = a + t b a x c = e f a C N b C N c C N d C N e C N f C N a d x a = b c x d = e f
66 eqid C N = C N
67 1 2 66 constrsuc φ x C suc N x a C N b C N c C N d C N t r x = a + t b a x = c + r d c b a d c 0 a C N b C N c C N e C N f C N t x = a + t b a x c = e f a C N b C N c C N d C N e C N f C N a d x a = b c x d = e f
68 67 adantr φ x C N x C suc N x a C N b C N c C N d C N t r x = a + t b a x = c + r d c b a d c 0 a C N b C N c C N e C N f C N t x = a + t b a x c = e f a C N b C N c C N d C N e C N f C N a d x a = b c x d = e f
69 5 65 68 mpbir2and φ x C N x C suc N
70 69 ex φ x C N x C suc N
71 70 ssrdv φ C N C suc N