| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|
| 2 |
|
constrsscn.1 |
|
| 3 |
|
constrsslem.1 |
|
| 4 |
1 2
|
constrsscn |
|
| 5 |
4
|
sselda |
|
| 6 |
|
simpr |
|
| 7 |
|
id |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
oveq2d |
|
| 10 |
7 9
|
oveq12d |
|
| 11 |
10
|
eqeq2d |
|
| 12 |
11
|
anbi1d |
|
| 13 |
12
|
rexbidv |
|
| 14 |
13
|
2rexbidv |
|
| 15 |
14
|
2rexbidv |
|
| 16 |
15
|
adantl |
|
| 17 |
3
|
adantr |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19
|
oveq2d |
|
| 21 |
20
|
eqeq2d |
|
| 22 |
21
|
anbi1d |
|
| 23 |
22
|
2rexbidv |
|
| 24 |
23
|
2rexbidv |
|
| 25 |
24
|
adantl |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
fveq2d |
|
| 28 |
27
|
eqeq1d |
|
| 29 |
28
|
anbi2d |
|
| 30 |
29
|
rexbidv |
|
| 31 |
30
|
2rexbidv |
|
| 32 |
31
|
adantl |
|
| 33 |
|
oveq1 |
|
| 34 |
33
|
fveq2d |
|
| 35 |
34
|
eqeq2d |
|
| 36 |
35
|
anbi2d |
|
| 37 |
36
|
2rexbidv |
|
| 38 |
37
|
adantl |
|
| 39 |
|
oveq2 |
|
| 40 |
39
|
fveq2d |
|
| 41 |
40
|
eqeq2d |
|
| 42 |
41
|
anbi2d |
|
| 43 |
42
|
rexbidv |
|
| 44 |
43
|
adantl |
|
| 45 |
|
0red |
|
| 46 |
|
oveq1 |
|
| 47 |
46
|
oveq2d |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
48
|
anbi1d |
|
| 50 |
49
|
adantl |
|
| 51 |
|
0cnd |
|
| 52 |
51 5
|
subcld |
|
| 53 |
52
|
mul02d |
|
| 54 |
53
|
oveq2d |
|
| 55 |
5
|
addridd |
|
| 56 |
54 55
|
eqtr2d |
|
| 57 |
|
eqidd |
|
| 58 |
56 57
|
jca |
|
| 59 |
45 50 58
|
rspcedvd |
|
| 60 |
17 44 59
|
rspcedvd |
|
| 61 |
6 38 60
|
rspcedvd |
|
| 62 |
17 32 61
|
rspcedvd |
|
| 63 |
17 25 62
|
rspcedvd |
|
| 64 |
6 16 63
|
rspcedvd |
|
| 65 |
64
|
3mix2d |
|
| 66 |
|
eqid |
|
| 67 |
1 2 66
|
constrsuc |
|
| 68 |
67
|
adantr |
|
| 69 |
5 65 68
|
mpbir2and |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
ssrdv |
|