| Step | Hyp | Ref | Expression | 
						
							| 1 |  | constr0.1 |  | 
						
							| 2 |  | constrsscn.1 |  | 
						
							| 3 |  | fveq2 |  | 
						
							| 4 | 3 | sseq2d |  | 
						
							| 5 |  | fveq2 |  | 
						
							| 6 | 5 | sseq2d |  | 
						
							| 7 |  | fveq2 |  | 
						
							| 8 | 7 | sseq2d |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 | 9 | sseq2d |  | 
						
							| 11 | 1 | constr0 |  | 
						
							| 12 | 11 | eqimss2i |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 |  | simpl |  | 
						
							| 15 |  | c0ex |  | 
						
							| 16 | 15 | prid1 |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 | 13 17 | sseldd |  | 
						
							| 19 | 1 14 18 | constrsslem |  | 
						
							| 20 | 13 19 | sstrd |  | 
						
							| 21 | 20 | ex |  | 
						
							| 22 |  | 0ellim |  | 
						
							| 23 |  | fveq2 |  | 
						
							| 24 | 23 11 | eqtrdi |  | 
						
							| 25 | 24 | ssiun2s |  | 
						
							| 26 | 22 25 | syl |  | 
						
							| 27 |  | vex |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 |  | id |  | 
						
							| 30 | 1 28 29 | constrlim |  | 
						
							| 31 | 26 30 | sseqtrrd |  | 
						
							| 32 | 31 | a1d |  | 
						
							| 33 | 4 6 8 10 12 21 32 | tfinds |  | 
						
							| 34 | 2 33 | syl |  |