| Step | Hyp | Ref | Expression | 
						
							| 1 |  | constr0.1 | ⊢ 𝐶  =  rec ( ( 𝑠  ∈  V  ↦  { 𝑥  ∈  ℂ  ∣  ( ∃ 𝑎  ∈  𝑠 ∃ 𝑏  ∈  𝑠 ∃ 𝑐  ∈  𝑠 ∃ 𝑑  ∈  𝑠 ∃ 𝑡  ∈  ℝ ∃ 𝑟  ∈  ℝ ( 𝑥  =  ( 𝑎  +  ( 𝑡  ·  ( 𝑏  −  𝑎 ) ) )  ∧  𝑥  =  ( 𝑐  +  ( 𝑟  ·  ( 𝑑  −  𝑐 ) ) )  ∧  ( ℑ ‘ ( ( ∗ ‘ ( 𝑏  −  𝑎 ) )  ·  ( 𝑑  −  𝑐 ) ) )  ≠  0 )  ∨  ∃ 𝑎  ∈  𝑠 ∃ 𝑏  ∈  𝑠 ∃ 𝑐  ∈  𝑠 ∃ 𝑒  ∈  𝑠 ∃ 𝑓  ∈  𝑠 ∃ 𝑡  ∈  ℝ ( 𝑥  =  ( 𝑎  +  ( 𝑡  ·  ( 𝑏  −  𝑎 ) ) )  ∧  ( abs ‘ ( 𝑥  −  𝑐 ) )  =  ( abs ‘ ( 𝑒  −  𝑓 ) ) )  ∨  ∃ 𝑎  ∈  𝑠 ∃ 𝑏  ∈  𝑠 ∃ 𝑐  ∈  𝑠 ∃ 𝑑  ∈  𝑠 ∃ 𝑒  ∈  𝑠 ∃ 𝑓  ∈  𝑠 ( 𝑎  ≠  𝑑  ∧  ( abs ‘ ( 𝑥  −  𝑎 ) )  =  ( abs ‘ ( 𝑏  −  𝑐 ) )  ∧  ( abs ‘ ( 𝑥  −  𝑑 ) )  =  ( abs ‘ ( 𝑒  −  𝑓 ) ) ) ) } ) ,  { 0 ,  1 } ) | 
						
							| 2 |  | constrsscn.1 | ⊢ ( 𝜑  →  𝑁  ∈  On ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑚  =  ∅  →  ( 𝐶 ‘ 𝑚 )  =  ( 𝐶 ‘ ∅ ) ) | 
						
							| 4 | 3 | sseq2d | ⊢ ( 𝑚  =  ∅  →  ( { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑚 )  ↔  { 0 ,  1 }  ⊆  ( 𝐶 ‘ ∅ ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐶 ‘ 𝑚 )  =  ( 𝐶 ‘ 𝑛 ) ) | 
						
							| 6 | 5 | sseq2d | ⊢ ( 𝑚  =  𝑛  →  ( { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑚 )  ↔  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑚  =  suc  𝑛  →  ( 𝐶 ‘ 𝑚 )  =  ( 𝐶 ‘ suc  𝑛 ) ) | 
						
							| 8 | 7 | sseq2d | ⊢ ( 𝑚  =  suc  𝑛  →  ( { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑚 )  ↔  { 0 ,  1 }  ⊆  ( 𝐶 ‘ suc  𝑛 ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑚  =  𝑁  →  ( 𝐶 ‘ 𝑚 )  =  ( 𝐶 ‘ 𝑁 ) ) | 
						
							| 10 | 9 | sseq2d | ⊢ ( 𝑚  =  𝑁  →  ( { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑚 )  ↔  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑁 ) ) ) | 
						
							| 11 | 1 | constr0 | ⊢ ( 𝐶 ‘ ∅ )  =  { 0 ,  1 } | 
						
							| 12 | 11 | eqimss2i | ⊢ { 0 ,  1 }  ⊆  ( 𝐶 ‘ ∅ ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑛  ∈  On  ∧  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 ) )  →  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝑛  ∈  On  ∧  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 ) )  →  𝑛  ∈  On ) | 
						
							| 15 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 16 | 15 | prid1 | ⊢ 0  ∈  { 0 ,  1 } | 
						
							| 17 | 16 | a1i | ⊢ ( ( 𝑛  ∈  On  ∧  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 ) )  →  0  ∈  { 0 ,  1 } ) | 
						
							| 18 | 13 17 | sseldd | ⊢ ( ( 𝑛  ∈  On  ∧  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 ) )  →  0  ∈  ( 𝐶 ‘ 𝑛 ) ) | 
						
							| 19 | 1 14 18 | constrsslem | ⊢ ( ( 𝑛  ∈  On  ∧  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 ) )  →  ( 𝐶 ‘ 𝑛 )  ⊆  ( 𝐶 ‘ suc  𝑛 ) ) | 
						
							| 20 | 13 19 | sstrd | ⊢ ( ( 𝑛  ∈  On  ∧  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 ) )  →  { 0 ,  1 }  ⊆  ( 𝐶 ‘ suc  𝑛 ) ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝑛  ∈  On  →  ( { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 )  →  { 0 ,  1 }  ⊆  ( 𝐶 ‘ suc  𝑛 ) ) ) | 
						
							| 22 |  | 0ellim | ⊢ ( Lim  𝑚  →  ∅  ∈  𝑚 ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑜  =  ∅  →  ( 𝐶 ‘ 𝑜 )  =  ( 𝐶 ‘ ∅ ) ) | 
						
							| 24 | 23 11 | eqtrdi | ⊢ ( 𝑜  =  ∅  →  ( 𝐶 ‘ 𝑜 )  =  { 0 ,  1 } ) | 
						
							| 25 | 24 | ssiun2s | ⊢ ( ∅  ∈  𝑚  →  { 0 ,  1 }  ⊆  ∪  𝑜  ∈  𝑚 ( 𝐶 ‘ 𝑜 ) ) | 
						
							| 26 | 22 25 | syl | ⊢ ( Lim  𝑚  →  { 0 ,  1 }  ⊆  ∪  𝑜  ∈  𝑚 ( 𝐶 ‘ 𝑜 ) ) | 
						
							| 27 |  | vex | ⊢ 𝑚  ∈  V | 
						
							| 28 | 27 | a1i | ⊢ ( Lim  𝑚  →  𝑚  ∈  V ) | 
						
							| 29 |  | id | ⊢ ( Lim  𝑚  →  Lim  𝑚 ) | 
						
							| 30 | 1 28 29 | constrlim | ⊢ ( Lim  𝑚  →  ( 𝐶 ‘ 𝑚 )  =  ∪  𝑜  ∈  𝑚 ( 𝐶 ‘ 𝑜 ) ) | 
						
							| 31 | 26 30 | sseqtrrd | ⊢ ( Lim  𝑚  →  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑚 ) ) | 
						
							| 32 | 31 | a1d | ⊢ ( Lim  𝑚  →  ( ∀ 𝑛  ∈  𝑚 { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑛 )  →  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑚 ) ) ) | 
						
							| 33 | 4 6 8 10 12 21 32 | tfinds | ⊢ ( 𝑁  ∈  On  →  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑁 ) ) | 
						
							| 34 | 2 33 | syl | ⊢ ( 𝜑  →  { 0 ,  1 }  ⊆  ( 𝐶 ‘ 𝑁 ) ) |