Metamath Proof Explorer


Theorem constr01

Description: 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025)

Ref Expression
Hypotheses constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
constrsscn.1 ( 𝜑𝑁 ∈ On )
Assertion constr01 ( 𝜑 → { 0 , 1 } ⊆ ( 𝐶𝑁 ) )

Proof

Step Hyp Ref Expression
1 constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
2 constrsscn.1 ( 𝜑𝑁 ∈ On )
3 fveq2 ( 𝑚 = ∅ → ( 𝐶𝑚 ) = ( 𝐶 ‘ ∅ ) )
4 3 sseq2d ( 𝑚 = ∅ → ( { 0 , 1 } ⊆ ( 𝐶𝑚 ) ↔ { 0 , 1 } ⊆ ( 𝐶 ‘ ∅ ) ) )
5 fveq2 ( 𝑚 = 𝑛 → ( 𝐶𝑚 ) = ( 𝐶𝑛 ) )
6 5 sseq2d ( 𝑚 = 𝑛 → ( { 0 , 1 } ⊆ ( 𝐶𝑚 ) ↔ { 0 , 1 } ⊆ ( 𝐶𝑛 ) ) )
7 fveq2 ( 𝑚 = suc 𝑛 → ( 𝐶𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) )
8 7 sseq2d ( 𝑚 = suc 𝑛 → ( { 0 , 1 } ⊆ ( 𝐶𝑚 ) ↔ { 0 , 1 } ⊆ ( 𝐶 ‘ suc 𝑛 ) ) )
9 fveq2 ( 𝑚 = 𝑁 → ( 𝐶𝑚 ) = ( 𝐶𝑁 ) )
10 9 sseq2d ( 𝑚 = 𝑁 → ( { 0 , 1 } ⊆ ( 𝐶𝑚 ) ↔ { 0 , 1 } ⊆ ( 𝐶𝑁 ) ) )
11 1 constr0 ( 𝐶 ‘ ∅ ) = { 0 , 1 }
12 11 eqimss2i { 0 , 1 } ⊆ ( 𝐶 ‘ ∅ )
13 simpr ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶𝑛 ) ) → { 0 , 1 } ⊆ ( 𝐶𝑛 ) )
14 simpl ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶𝑛 ) ) → 𝑛 ∈ On )
15 c0ex 0 ∈ V
16 15 prid1 0 ∈ { 0 , 1 }
17 16 a1i ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶𝑛 ) ) → 0 ∈ { 0 , 1 } )
18 13 17 sseldd ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶𝑛 ) ) → 0 ∈ ( 𝐶𝑛 ) )
19 1 14 18 constrsslem ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶𝑛 ) ) → ( 𝐶𝑛 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) )
20 13 19 sstrd ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶𝑛 ) ) → { 0 , 1 } ⊆ ( 𝐶 ‘ suc 𝑛 ) )
21 20 ex ( 𝑛 ∈ On → ( { 0 , 1 } ⊆ ( 𝐶𝑛 ) → { 0 , 1 } ⊆ ( 𝐶 ‘ suc 𝑛 ) ) )
22 0ellim ( Lim 𝑚 → ∅ ∈ 𝑚 )
23 fveq2 ( 𝑜 = ∅ → ( 𝐶𝑜 ) = ( 𝐶 ‘ ∅ ) )
24 23 11 eqtrdi ( 𝑜 = ∅ → ( 𝐶𝑜 ) = { 0 , 1 } )
25 24 ssiun2s ( ∅ ∈ 𝑚 → { 0 , 1 } ⊆ 𝑜𝑚 ( 𝐶𝑜 ) )
26 22 25 syl ( Lim 𝑚 → { 0 , 1 } ⊆ 𝑜𝑚 ( 𝐶𝑜 ) )
27 vex 𝑚 ∈ V
28 27 a1i ( Lim 𝑚𝑚 ∈ V )
29 id ( Lim 𝑚 → Lim 𝑚 )
30 1 28 29 constrlim ( Lim 𝑚 → ( 𝐶𝑚 ) = 𝑜𝑚 ( 𝐶𝑜 ) )
31 26 30 sseqtrrd ( Lim 𝑚 → { 0 , 1 } ⊆ ( 𝐶𝑚 ) )
32 31 a1d ( Lim 𝑚 → ( ∀ 𝑛𝑚 { 0 , 1 } ⊆ ( 𝐶𝑛 ) → { 0 , 1 } ⊆ ( 𝐶𝑚 ) ) )
33 4 6 8 10 12 21 32 tfinds ( 𝑁 ∈ On → { 0 , 1 } ⊆ ( 𝐶𝑁 ) )
34 2 33 syl ( 𝜑 → { 0 , 1 } ⊆ ( 𝐶𝑁 ) )