| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrsscn.1 |
⊢ ( 𝜑 → 𝑁 ∈ On ) |
| 3 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ ∅ ) ) |
| 4 |
3
|
sseq2d |
⊢ ( 𝑚 = ∅ → ( { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑚 ) ↔ { 0 , 1 } ⊆ ( 𝐶 ‘ ∅ ) ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑛 ) ) |
| 6 |
5
|
sseq2d |
⊢ ( 𝑚 = 𝑛 → ( { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑚 ) ↔ { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) ) |
| 8 |
7
|
sseq2d |
⊢ ( 𝑚 = suc 𝑛 → ( { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑚 ) ↔ { 0 , 1 } ⊆ ( 𝐶 ‘ suc 𝑛 ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑁 ) ) |
| 10 |
9
|
sseq2d |
⊢ ( 𝑚 = 𝑁 → ( { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑚 ) ↔ { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑁 ) ) ) |
| 11 |
1
|
constr0 |
⊢ ( 𝐶 ‘ ∅ ) = { 0 , 1 } |
| 12 |
11
|
eqimss2i |
⊢ { 0 , 1 } ⊆ ( 𝐶 ‘ ∅ ) |
| 13 |
|
simpr |
⊢ ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) ) → { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 14 |
|
simpl |
⊢ ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝑛 ∈ On ) |
| 15 |
|
c0ex |
⊢ 0 ∈ V |
| 16 |
15
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
| 17 |
16
|
a1i |
⊢ ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) ) → 0 ∈ { 0 , 1 } ) |
| 18 |
13 17
|
sseldd |
⊢ ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) ) → 0 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 19 |
1 14 18
|
constrsslem |
⊢ ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( 𝐶 ‘ suc 𝑛 ) ) |
| 20 |
13 19
|
sstrd |
⊢ ( ( 𝑛 ∈ On ∧ { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) ) → { 0 , 1 } ⊆ ( 𝐶 ‘ suc 𝑛 ) ) |
| 21 |
20
|
ex |
⊢ ( 𝑛 ∈ On → ( { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) → { 0 , 1 } ⊆ ( 𝐶 ‘ suc 𝑛 ) ) ) |
| 22 |
|
0ellim |
⊢ ( Lim 𝑚 → ∅ ∈ 𝑚 ) |
| 23 |
|
fveq2 |
⊢ ( 𝑜 = ∅ → ( 𝐶 ‘ 𝑜 ) = ( 𝐶 ‘ ∅ ) ) |
| 24 |
23 11
|
eqtrdi |
⊢ ( 𝑜 = ∅ → ( 𝐶 ‘ 𝑜 ) = { 0 , 1 } ) |
| 25 |
24
|
ssiun2s |
⊢ ( ∅ ∈ 𝑚 → { 0 , 1 } ⊆ ∪ 𝑜 ∈ 𝑚 ( 𝐶 ‘ 𝑜 ) ) |
| 26 |
22 25
|
syl |
⊢ ( Lim 𝑚 → { 0 , 1 } ⊆ ∪ 𝑜 ∈ 𝑚 ( 𝐶 ‘ 𝑜 ) ) |
| 27 |
|
vex |
⊢ 𝑚 ∈ V |
| 28 |
27
|
a1i |
⊢ ( Lim 𝑚 → 𝑚 ∈ V ) |
| 29 |
|
id |
⊢ ( Lim 𝑚 → Lim 𝑚 ) |
| 30 |
1 28 29
|
constrlim |
⊢ ( Lim 𝑚 → ( 𝐶 ‘ 𝑚 ) = ∪ 𝑜 ∈ 𝑚 ( 𝐶 ‘ 𝑜 ) ) |
| 31 |
26 30
|
sseqtrrd |
⊢ ( Lim 𝑚 → { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑚 ) ) |
| 32 |
31
|
a1d |
⊢ ( Lim 𝑚 → ( ∀ 𝑛 ∈ 𝑚 { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑛 ) → { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑚 ) ) ) |
| 33 |
4 6 8 10 12 21 32
|
tfinds |
⊢ ( 𝑁 ∈ On → { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑁 ) ) |
| 34 |
2 33
|
syl |
⊢ ( 𝜑 → { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑁 ) ) |