| Step | Hyp | Ref | Expression | 
						
							| 1 |  | constr0.1 |  |-  C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) | 
						
							| 2 |  | constrsscn.1 |  |-  ( ph -> N e. On ) | 
						
							| 3 |  | fveq2 |  |-  ( m = (/) -> ( C ` m ) = ( C ` (/) ) ) | 
						
							| 4 | 3 | sseq2d |  |-  ( m = (/) -> ( { 0 , 1 } C_ ( C ` m ) <-> { 0 , 1 } C_ ( C ` (/) ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( m = n -> ( C ` m ) = ( C ` n ) ) | 
						
							| 6 | 5 | sseq2d |  |-  ( m = n -> ( { 0 , 1 } C_ ( C ` m ) <-> { 0 , 1 } C_ ( C ` n ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( m = suc n -> ( C ` m ) = ( C ` suc n ) ) | 
						
							| 8 | 7 | sseq2d |  |-  ( m = suc n -> ( { 0 , 1 } C_ ( C ` m ) <-> { 0 , 1 } C_ ( C ` suc n ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( m = N -> ( C ` m ) = ( C ` N ) ) | 
						
							| 10 | 9 | sseq2d |  |-  ( m = N -> ( { 0 , 1 } C_ ( C ` m ) <-> { 0 , 1 } C_ ( C ` N ) ) ) | 
						
							| 11 | 1 | constr0 |  |-  ( C ` (/) ) = { 0 , 1 } | 
						
							| 12 | 11 | eqimss2i |  |-  { 0 , 1 } C_ ( C ` (/) ) | 
						
							| 13 |  | simpr |  |-  ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> { 0 , 1 } C_ ( C ` n ) ) | 
						
							| 14 |  | simpl |  |-  ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> n e. On ) | 
						
							| 15 |  | c0ex |  |-  0 e. _V | 
						
							| 16 | 15 | prid1 |  |-  0 e. { 0 , 1 } | 
						
							| 17 | 16 | a1i |  |-  ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> 0 e. { 0 , 1 } ) | 
						
							| 18 | 13 17 | sseldd |  |-  ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> 0 e. ( C ` n ) ) | 
						
							| 19 | 1 14 18 | constrsslem |  |-  ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> ( C ` n ) C_ ( C ` suc n ) ) | 
						
							| 20 | 13 19 | sstrd |  |-  ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> { 0 , 1 } C_ ( C ` suc n ) ) | 
						
							| 21 | 20 | ex |  |-  ( n e. On -> ( { 0 , 1 } C_ ( C ` n ) -> { 0 , 1 } C_ ( C ` suc n ) ) ) | 
						
							| 22 |  | 0ellim |  |-  ( Lim m -> (/) e. m ) | 
						
							| 23 |  | fveq2 |  |-  ( o = (/) -> ( C ` o ) = ( C ` (/) ) ) | 
						
							| 24 | 23 11 | eqtrdi |  |-  ( o = (/) -> ( C ` o ) = { 0 , 1 } ) | 
						
							| 25 | 24 | ssiun2s |  |-  ( (/) e. m -> { 0 , 1 } C_ U_ o e. m ( C ` o ) ) | 
						
							| 26 | 22 25 | syl |  |-  ( Lim m -> { 0 , 1 } C_ U_ o e. m ( C ` o ) ) | 
						
							| 27 |  | vex |  |-  m e. _V | 
						
							| 28 | 27 | a1i |  |-  ( Lim m -> m e. _V ) | 
						
							| 29 |  | id |  |-  ( Lim m -> Lim m ) | 
						
							| 30 | 1 28 29 | constrlim |  |-  ( Lim m -> ( C ` m ) = U_ o e. m ( C ` o ) ) | 
						
							| 31 | 26 30 | sseqtrrd |  |-  ( Lim m -> { 0 , 1 } C_ ( C ` m ) ) | 
						
							| 32 | 31 | a1d |  |-  ( Lim m -> ( A. n e. m { 0 , 1 } C_ ( C ` n ) -> { 0 , 1 } C_ ( C ` m ) ) ) | 
						
							| 33 | 4 6 8 10 12 21 32 | tfinds |  |-  ( N e. On -> { 0 , 1 } C_ ( C ` N ) ) | 
						
							| 34 | 2 33 | syl |  |-  ( ph -> { 0 , 1 } C_ ( C ` N ) ) |