| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrsscn.1 |
|- ( ph -> N e. On ) |
| 3 |
|
fveq2 |
|- ( m = (/) -> ( C ` m ) = ( C ` (/) ) ) |
| 4 |
3
|
sseq2d |
|- ( m = (/) -> ( { 0 , 1 } C_ ( C ` m ) <-> { 0 , 1 } C_ ( C ` (/) ) ) ) |
| 5 |
|
fveq2 |
|- ( m = n -> ( C ` m ) = ( C ` n ) ) |
| 6 |
5
|
sseq2d |
|- ( m = n -> ( { 0 , 1 } C_ ( C ` m ) <-> { 0 , 1 } C_ ( C ` n ) ) ) |
| 7 |
|
fveq2 |
|- ( m = suc n -> ( C ` m ) = ( C ` suc n ) ) |
| 8 |
7
|
sseq2d |
|- ( m = suc n -> ( { 0 , 1 } C_ ( C ` m ) <-> { 0 , 1 } C_ ( C ` suc n ) ) ) |
| 9 |
|
fveq2 |
|- ( m = N -> ( C ` m ) = ( C ` N ) ) |
| 10 |
9
|
sseq2d |
|- ( m = N -> ( { 0 , 1 } C_ ( C ` m ) <-> { 0 , 1 } C_ ( C ` N ) ) ) |
| 11 |
1
|
constr0 |
|- ( C ` (/) ) = { 0 , 1 } |
| 12 |
11
|
eqimss2i |
|- { 0 , 1 } C_ ( C ` (/) ) |
| 13 |
|
simpr |
|- ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> { 0 , 1 } C_ ( C ` n ) ) |
| 14 |
|
simpl |
|- ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> n e. On ) |
| 15 |
|
c0ex |
|- 0 e. _V |
| 16 |
15
|
prid1 |
|- 0 e. { 0 , 1 } |
| 17 |
16
|
a1i |
|- ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> 0 e. { 0 , 1 } ) |
| 18 |
13 17
|
sseldd |
|- ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> 0 e. ( C ` n ) ) |
| 19 |
1 14 18
|
constrsslem |
|- ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> ( C ` n ) C_ ( C ` suc n ) ) |
| 20 |
13 19
|
sstrd |
|- ( ( n e. On /\ { 0 , 1 } C_ ( C ` n ) ) -> { 0 , 1 } C_ ( C ` suc n ) ) |
| 21 |
20
|
ex |
|- ( n e. On -> ( { 0 , 1 } C_ ( C ` n ) -> { 0 , 1 } C_ ( C ` suc n ) ) ) |
| 22 |
|
0ellim |
|- ( Lim m -> (/) e. m ) |
| 23 |
|
fveq2 |
|- ( o = (/) -> ( C ` o ) = ( C ` (/) ) ) |
| 24 |
23 11
|
eqtrdi |
|- ( o = (/) -> ( C ` o ) = { 0 , 1 } ) |
| 25 |
24
|
ssiun2s |
|- ( (/) e. m -> { 0 , 1 } C_ U_ o e. m ( C ` o ) ) |
| 26 |
22 25
|
syl |
|- ( Lim m -> { 0 , 1 } C_ U_ o e. m ( C ` o ) ) |
| 27 |
|
vex |
|- m e. _V |
| 28 |
27
|
a1i |
|- ( Lim m -> m e. _V ) |
| 29 |
|
id |
|- ( Lim m -> Lim m ) |
| 30 |
1 28 29
|
constrlim |
|- ( Lim m -> ( C ` m ) = U_ o e. m ( C ` o ) ) |
| 31 |
26 30
|
sseqtrrd |
|- ( Lim m -> { 0 , 1 } C_ ( C ` m ) ) |
| 32 |
31
|
a1d |
|- ( Lim m -> ( A. n e. m { 0 , 1 } C_ ( C ` n ) -> { 0 , 1 } C_ ( C ` m ) ) ) |
| 33 |
4 6 8 10 12 21 32
|
tfinds |
|- ( N e. On -> { 0 , 1 } C_ ( C ` N ) ) |
| 34 |
2 33
|
syl |
|- ( ph -> { 0 , 1 } C_ ( C ` N ) ) |