Step |
Hyp |
Ref |
Expression |
1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
2 |
|
constrsscn.1 |
|- ( ph -> N e. On ) |
3 |
|
constrmon.1 |
|- ( ph -> M e. N ) |
4 |
|
eleq2 |
|- ( m = (/) -> ( M e. m <-> M e. (/) ) ) |
5 |
|
fveq2 |
|- ( m = (/) -> ( C ` m ) = ( C ` (/) ) ) |
6 |
5
|
sseq2d |
|- ( m = (/) -> ( ( C ` M ) C_ ( C ` m ) <-> ( C ` M ) C_ ( C ` (/) ) ) ) |
7 |
4 6
|
imbi12d |
|- ( m = (/) -> ( ( M e. m -> ( C ` M ) C_ ( C ` m ) ) <-> ( M e. (/) -> ( C ` M ) C_ ( C ` (/) ) ) ) ) |
8 |
|
eleq2w |
|- ( m = n -> ( M e. m <-> M e. n ) ) |
9 |
|
fveq2 |
|- ( m = n -> ( C ` m ) = ( C ` n ) ) |
10 |
9
|
sseq2d |
|- ( m = n -> ( ( C ` M ) C_ ( C ` m ) <-> ( C ` M ) C_ ( C ` n ) ) ) |
11 |
8 10
|
imbi12d |
|- ( m = n -> ( ( M e. m -> ( C ` M ) C_ ( C ` m ) ) <-> ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) ) |
12 |
|
eleq2 |
|- ( m = suc n -> ( M e. m <-> M e. suc n ) ) |
13 |
|
fveq2 |
|- ( m = suc n -> ( C ` m ) = ( C ` suc n ) ) |
14 |
13
|
sseq2d |
|- ( m = suc n -> ( ( C ` M ) C_ ( C ` m ) <-> ( C ` M ) C_ ( C ` suc n ) ) ) |
15 |
12 14
|
imbi12d |
|- ( m = suc n -> ( ( M e. m -> ( C ` M ) C_ ( C ` m ) ) <-> ( M e. suc n -> ( C ` M ) C_ ( C ` suc n ) ) ) ) |
16 |
|
eleq2 |
|- ( m = N -> ( M e. m <-> M e. N ) ) |
17 |
|
fveq2 |
|- ( m = N -> ( C ` m ) = ( C ` N ) ) |
18 |
17
|
sseq2d |
|- ( m = N -> ( ( C ` M ) C_ ( C ` m ) <-> ( C ` M ) C_ ( C ` N ) ) ) |
19 |
16 18
|
imbi12d |
|- ( m = N -> ( ( M e. m -> ( C ` M ) C_ ( C ` m ) ) <-> ( M e. N -> ( C ` M ) C_ ( C ` N ) ) ) ) |
20 |
|
noel |
|- -. M e. (/) |
21 |
20
|
pm2.21i |
|- ( M e. (/) -> ( C ` M ) C_ ( C ` (/) ) ) |
22 |
|
simpllr |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M e. n ) -> ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) |
23 |
22
|
syldbl2 |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M e. n ) -> ( C ` M ) C_ ( C ` n ) ) |
24 |
|
simplll |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M e. n ) -> n e. On ) |
25 |
1 24
|
constrss |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M e. n ) -> ( C ` n ) C_ ( C ` suc n ) ) |
26 |
23 25
|
sstrd |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M e. n ) -> ( C ` M ) C_ ( C ` suc n ) ) |
27 |
|
simpr |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M = n ) -> M = n ) |
28 |
27
|
fveq2d |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M = n ) -> ( C ` M ) = ( C ` n ) ) |
29 |
|
simplll |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M = n ) -> n e. On ) |
30 |
1 29
|
constrss |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M = n ) -> ( C ` n ) C_ ( C ` suc n ) ) |
31 |
28 30
|
eqsstrd |
|- ( ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) /\ M = n ) -> ( C ` M ) C_ ( C ` suc n ) ) |
32 |
|
simpr |
|- ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) -> M e. suc n ) |
33 |
|
elsuci |
|- ( M e. suc n -> ( M e. n \/ M = n ) ) |
34 |
32 33
|
syl |
|- ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) -> ( M e. n \/ M = n ) ) |
35 |
26 31 34
|
mpjaodan |
|- ( ( ( n e. On /\ ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. suc n ) -> ( C ` M ) C_ ( C ` suc n ) ) |
36 |
35
|
exp31 |
|- ( n e. On -> ( ( M e. n -> ( C ` M ) C_ ( C ` n ) ) -> ( M e. suc n -> ( C ` M ) C_ ( C ` suc n ) ) ) ) |
37 |
|
fveq2 |
|- ( i = M -> ( C ` i ) = ( C ` M ) ) |
38 |
37
|
sseq2d |
|- ( i = M -> ( ( C ` M ) C_ ( C ` i ) <-> ( C ` M ) C_ ( C ` M ) ) ) |
39 |
|
simpr |
|- ( ( ( Lim m /\ A. n e. m ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. m ) -> M e. m ) |
40 |
|
ssidd |
|- ( ( ( Lim m /\ A. n e. m ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. m ) -> ( C ` M ) C_ ( C ` M ) ) |
41 |
38 39 40
|
rspcedvdw |
|- ( ( ( Lim m /\ A. n e. m ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. m ) -> E. i e. m ( C ` M ) C_ ( C ` i ) ) |
42 |
|
ssiun |
|- ( E. i e. m ( C ` M ) C_ ( C ` i ) -> ( C ` M ) C_ U_ i e. m ( C ` i ) ) |
43 |
41 42
|
syl |
|- ( ( ( Lim m /\ A. n e. m ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. m ) -> ( C ` M ) C_ U_ i e. m ( C ` i ) ) |
44 |
|
vex |
|- m e. _V |
45 |
44
|
a1i |
|- ( ( ( Lim m /\ A. n e. m ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. m ) -> m e. _V ) |
46 |
|
simpll |
|- ( ( ( Lim m /\ A. n e. m ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. m ) -> Lim m ) |
47 |
1 45 46
|
constrlim |
|- ( ( ( Lim m /\ A. n e. m ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. m ) -> ( C ` m ) = U_ i e. m ( C ` i ) ) |
48 |
43 47
|
sseqtrrd |
|- ( ( ( Lim m /\ A. n e. m ( M e. n -> ( C ` M ) C_ ( C ` n ) ) ) /\ M e. m ) -> ( C ` M ) C_ ( C ` m ) ) |
49 |
48
|
exp31 |
|- ( Lim m -> ( A. n e. m ( M e. n -> ( C ` M ) C_ ( C ` n ) ) -> ( M e. m -> ( C ` M ) C_ ( C ` m ) ) ) ) |
50 |
7 11 15 19 21 36 49
|
tfinds |
|- ( N e. On -> ( M e. N -> ( C ` M ) C_ ( C ` N ) ) ) |
51 |
2 3 50
|
sylc |
|- ( ph -> ( C ` M ) C_ ( C ` N ) ) |