| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|
| 2 |
|
constrsscn.1 |
|
| 3 |
|
constrmon.1 |
|
| 4 |
|
eleq2 |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
sseq2d |
|
| 7 |
4 6
|
imbi12d |
|
| 8 |
|
eleq2w |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
sseq2d |
|
| 11 |
8 10
|
imbi12d |
|
| 12 |
|
eleq2 |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
sseq2d |
|
| 15 |
12 14
|
imbi12d |
|
| 16 |
|
eleq2 |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
sseq2d |
|
| 19 |
16 18
|
imbi12d |
|
| 20 |
|
noel |
|
| 21 |
20
|
pm2.21i |
|
| 22 |
|
simpllr |
|
| 23 |
22
|
syldbl2 |
|
| 24 |
|
simplll |
|
| 25 |
1 24
|
constrss |
|
| 26 |
23 25
|
sstrd |
|
| 27 |
|
simpr |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
simplll |
|
| 30 |
1 29
|
constrss |
|
| 31 |
28 30
|
eqsstrd |
|
| 32 |
|
simpr |
|
| 33 |
|
elsuci |
|
| 34 |
32 33
|
syl |
|
| 35 |
26 31 34
|
mpjaodan |
|
| 36 |
35
|
exp31 |
|
| 37 |
|
fveq2 |
|
| 38 |
37
|
sseq2d |
|
| 39 |
|
simpr |
|
| 40 |
|
ssidd |
|
| 41 |
38 39 40
|
rspcedvdw |
|
| 42 |
|
ssiun |
|
| 43 |
41 42
|
syl |
|
| 44 |
|
vex |
|
| 45 |
44
|
a1i |
|
| 46 |
|
simpll |
|
| 47 |
1 45 46
|
constrlim |
|
| 48 |
43 47
|
sseqtrrd |
|
| 49 |
48
|
exp31 |
|
| 50 |
7 11 15 19 21 36 49
|
tfinds |
|
| 51 |
2 3 50
|
sylc |
|