Metamath Proof Explorer


Theorem constrconj

Description: If a point X of the complex plane is constructible, so is its conjugate ( *X ) . (Proposed by Saveliy Skresanov, 25-Jun-2025.) (Contributed by Thierry Arnoux, 1-Jul-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrconj.1 φ N On
constrconj.2 φ X C N
Assertion constrconj φ X C N

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrconj.1 φ N On
3 constrconj.2 φ X C N
4 fveq2 m = C m = C
5 4 eleq2d m = x C m x C
6 4 5 raleqbidv m = x C m x C m x C x C
7 fveq2 m = n C m = C n
8 7 eleq2d m = n x C m x C n
9 7 8 raleqbidv m = n x C m x C m x C n x C n
10 fveq2 m = suc n C m = C suc n
11 10 eleq2d m = suc n x C m x C suc n
12 10 11 raleqbidv m = suc n x C m x C m x C suc n x C suc n
13 fveq2 m = N C m = C N
14 13 eleq2d m = N x C m x C N
15 13 14 raleqbidv m = N x C m x C m x C N x C N
16 simpr x C x = 0 x = 0
17 16 fveq2d x C x = 0 x = 0
18 cj0 0 = 0
19 17 18 eqtrdi x C x = 0 x = 0
20 c0ex 0 V
21 20 prid1 0 0 1
22 21 a1i x C x = 0 0 0 1
23 19 22 eqeltrd x C x = 0 x 0 1
24 1 constr0 C = 0 1
25 24 a1i x C x = 0 C = 0 1
26 23 25 eleqtrrd x C x = 0 x C
27 simpr x C x = 1 x = 1
28 27 fveq2d x C x = 1 x = 1
29 1re 1
30 cjre 1 1 = 1
31 29 30 ax-mp 1 = 1
32 28 31 eqtrdi x C x = 1 x = 1
33 1ex 1 V
34 33 prid2 1 0 1
35 34 a1i x C x = 1 1 0 1
36 32 35 eqeltrd x C x = 1 x 0 1
37 24 a1i x C x = 1 C = 0 1
38 36 37 eleqtrrd x C x = 1 x C
39 24 eleq2i x C x 0 1
40 39 biimpi x C x 0 1
41 elpri x 0 1 x = 0 x = 1
42 40 41 syl x C x = 0 x = 1
43 26 38 42 mpjaodan x C x C
44 43 rgen x C x C
45 simpl n On x C n x C n n On
46 eqid C n = C n
47 1 45 46 constrsuc n On x C n x C n y C suc n y a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f
48 47 biimpa n On x C n x C n y C suc n y a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f
49 48 simpld n On x C n x C n y C suc n y
50 49 cjcld n On x C n x C n y C suc n y
51 48 simprd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f
52 fveq2 x = a x = a
53 52 eleq1d x = a x C n a C n
54 simp-4r n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 x C n x C n
55 simplr n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n
56 53 54 55 rspcdva n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n
57 id g = a g = a
58 oveq2 g = a h g = h a
59 58 oveq2d g = a t h g = t h a
60 57 59 oveq12d g = a g + t h g = a + t h a
61 60 eqeq2d g = a y = g + t h g y = a + t h a
62 58 fveq2d g = a h g = h a
63 62 oveq1d g = a h g j i = h a j i
64 63 fveq2d g = a h g j i = h a j i
65 64 neeq1d g = a h g j i 0 h a j i 0
66 61 65 3anbi13d g = a y = g + t h g y = i + r j i h g j i 0 y = a + t h a y = i + r j i h a j i 0
67 66 rexbidv g = a r y = g + t h g y = i + r j i h g j i 0 r y = a + t h a y = i + r j i h a j i 0
68 67 2rexbidv g = a j C n t r y = g + t h g y = i + r j i h g j i 0 j C n t r y = a + t h a y = i + r j i h a j i 0
69 68 2rexbidv g = a h C n i C n j C n t r y = g + t h g y = i + r j i h g j i 0 h C n i C n j C n t r y = a + t h a y = i + r j i h a j i 0
70 69 adantl n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 g = a h C n i C n j C n t r y = g + t h g y = i + r j i h g j i 0 h C n i C n j C n t r y = a + t h a y = i + r j i h a j i 0
71 fveq2 x = b x = b
72 71 eleq1d x = b x C n b C n
73 simp-5r n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 x C n x C n
74 simplr n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b C n
75 72 73 74 rspcdva n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b C n
76 oveq1 h = b h a = b a
77 76 oveq2d h = b t h a = t b a
78 77 oveq2d h = b a + t h a = a + t b a
79 78 eqeq2d h = b y = a + t h a y = a + t b a
80 76 fveq2d h = b h a = b a
81 80 oveq1d h = b h a j i = b a j i
82 81 fveq2d h = b h a j i = b a j i
83 82 neeq1d h = b h a j i 0 b a j i 0
84 79 83 3anbi13d h = b y = a + t h a y = i + r j i h a j i 0 y = a + t b a y = i + r j i b a j i 0
85 84 2rexbidv h = b t r y = a + t h a y = i + r j i h a j i 0 t r y = a + t b a y = i + r j i b a j i 0
86 85 2rexbidv h = b i C n j C n t r y = a + t h a y = i + r j i h a j i 0 i C n j C n t r y = a + t b a y = i + r j i b a j i 0
87 86 adantl n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 h = b i C n j C n t r y = a + t h a y = i + r j i h a j i 0 i C n j C n t r y = a + t b a y = i + r j i b a j i 0
88 fveq2 x = c x = c
89 88 eleq1d x = c x C n c C n
90 simp-6r n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 x C n x C n
91 simplr n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 c C n
92 89 90 91 rspcdva n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 c C n
93 id i = c i = c
94 oveq2 i = c j i = j c
95 94 oveq2d i = c r j i = r j c
96 93 95 oveq12d i = c i + r j i = c + r j c
97 96 eqeq2d i = c y = i + r j i y = c + r j c
98 94 oveq2d i = c b a j i = b a j c
99 98 fveq2d i = c b a j i = b a j c
100 99 neeq1d i = c b a j i 0 b a j c 0
101 97 100 3anbi23d i = c y = a + t b a y = i + r j i b a j i 0 y = a + t b a y = c + r j c b a j c 0
102 101 rexbidv i = c r y = a + t b a y = i + r j i b a j i 0 r y = a + t b a y = c + r j c b a j c 0
103 102 2rexbidv i = c j C n t r y = a + t b a y = i + r j i b a j i 0 j C n t r y = a + t b a y = c + r j c b a j c 0
104 103 adantl n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 i = c j C n t r y = a + t b a y = i + r j i b a j i 0 j C n t r y = a + t b a y = c + r j c b a j c 0
105 fveq2 x = d x = d
106 105 eleq1d x = d x C n d C n
107 simp-7r n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 x C n x C n
108 simplr n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 d C n
109 106 107 108 rspcdva n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 d C n
110 oveq1 j = d j c = d c
111 110 oveq2d j = d r j c = r d c
112 111 oveq2d j = d c + r j c = c + r d c
113 112 eqeq2d j = d y = c + r j c y = c + r d c
114 110 oveq2d j = d b a j c = b a d c
115 114 fveq2d j = d b a j c = b a d c
116 115 neeq1d j = d b a j c 0 b a d c 0
117 113 116 3anbi23d j = d y = a + t b a y = c + r j c b a j c 0 y = a + t b a y = c + r d c b a d c 0
118 117 2rexbidv j = d t r y = a + t b a y = c + r j c b a j c 0 t r y = a + t b a y = c + r d c b a d c 0
119 118 adantl n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 j = d t r y = a + t b a y = c + r j c b a j c 0 t r y = a + t b a y = c + r d c b a d c 0
120 simpr1 n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 y = a + t b a
121 120 fveq2d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 y = a + t b a
122 id n On n On
123 1 122 constrsscn n On C n
124 123 ad9antr n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 C n
125 simp-7r n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n
126 124 125 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a
127 simpllr n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 t
128 127 recnd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 t
129 simp-6r n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b C n
130 124 129 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b
131 130 126 subcld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a
132 128 131 mulcld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 t b a
133 126 132 cjaddd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a + t b a = a + t b a
134 128 131 cjmuld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 t b a = t b a
135 127 cjred n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 t = t
136 130 126 cjsubd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a = b a
137 135 136 oveq12d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 t b a = t b a
138 134 137 eqtrd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 t b a = t b a
139 138 oveq2d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a + t b a = a + t b a
140 121 133 139 3eqtrd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 y = a + t b a
141 simpr2 n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 y = c + r d c
142 141 fveq2d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 y = c + r d c
143 simp-5r n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 c C n
144 124 143 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 c
145 simplr n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 r
146 145 recnd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 r
147 simp-4r n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 d C n
148 124 147 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 d
149 148 144 subcld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 d c
150 146 149 mulcld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 r d c
151 144 150 cjaddd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 c + r d c = c + r d c
152 146 149 cjmuld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 r d c = r d c
153 145 cjred n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 r = r
154 148 144 cjsubd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 d c = d c
155 153 154 oveq12d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 r d c = r d c
156 152 155 eqtrd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 r d c = r d c
157 156 oveq2d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 c + r d c = c + r d c
158 142 151 157 3eqtrd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 y = c + r d c
159 131 cjcjd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a = b a
160 159 oveq1d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c = b a d c
161 131 cjcld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a
162 161 149 cjmuld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c = b a d c
163 130 cjcld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b
164 126 cjcld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a
165 163 164 cjsubd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a = b a
166 130 cjcjd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b = b
167 126 cjcjd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a = a
168 166 167 oveq12d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a = b a
169 165 168 eqtrd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a = b a
170 154 eqcomd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 d c = d c
171 169 170 oveq12d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c = b a d c
172 160 162 171 3eqtr4rd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c = b a d c
173 172 fveq2d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c = b a d c
174 161 149 mulcld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c
175 174 imcjd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c = b a d c
176 173 175 eqtrd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c = b a d c
177 simpr3 n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c 0
178 174 imcld n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c
179 178 recnd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c
180 179 negne0bd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c 0 b a d c 0
181 177 180 mpbid n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c 0
182 176 181 eqnetrd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b a d c 0
183 140 158 182 3jca n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 y = a + t b a y = c + r d c b a d c 0
184 183 ex n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 y = a + t b a y = c + r d c b a d c 0
185 184 reximdva n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 r y = a + t b a y = c + r d c b a d c 0
186 185 reximdva n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 t r y = a + t b a y = c + r d c b a d c 0
187 186 imp n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 t r y = a + t b a y = c + r d c b a d c 0
188 109 119 187 rspcedvd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 j C n t r y = a + t b a y = c + r j c b a j c 0
189 188 r19.29an n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 j C n t r y = a + t b a y = c + r j c b a j c 0
190 92 104 189 rspcedvd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 i C n j C n t r y = a + t b a y = i + r j i b a j i 0
191 190 r19.29an n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 i C n j C n t r y = a + t b a y = i + r j i b a j i 0
192 75 87 191 rspcedvd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 h C n i C n j C n t r y = a + t h a y = i + r j i h a j i 0
193 192 r19.29an n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 h C n i C n j C n t r y = a + t h a y = i + r j i h a j i 0
194 56 70 193 rspcedvd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 g C n h C n i C n j C n t r y = g + t h g y = i + r j i h g j i 0
195 194 r19.29an n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 g C n h C n i C n j C n t r y = g + t h g y = i + r j i h g j i 0
196 id a = g a = g
197 oveq2 a = g b a = b g
198 197 oveq2d a = g t b a = t b g
199 196 198 oveq12d a = g a + t b a = g + t b g
200 199 eqeq2d a = g y = a + t b a y = g + t b g
201 197 fveq2d a = g b a = b g
202 201 oveq1d a = g b a d c = b g d c
203 202 fveq2d a = g b a d c = b g d c
204 203 neeq1d a = g b a d c 0 b g d c 0
205 200 204 3anbi13d a = g y = a + t b a y = c + r d c b a d c 0 y = g + t b g y = c + r d c b g d c 0
206 205 rexbidv a = g r y = a + t b a y = c + r d c b a d c 0 r y = g + t b g y = c + r d c b g d c 0
207 206 2rexbidv a = g d C n t r y = a + t b a y = c + r d c b a d c 0 d C n t r y = g + t b g y = c + r d c b g d c 0
208 207 2rexbidv a = g b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 b C n c C n d C n t r y = g + t b g y = c + r d c b g d c 0
209 208 cbvrexvw a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 g C n b C n c C n d C n t r y = g + t b g y = c + r d c b g d c 0
210 oveq1 b = h b g = h g
211 210 oveq2d b = h t b g = t h g
212 211 oveq2d b = h g + t b g = g + t h g
213 212 eqeq2d b = h y = g + t b g y = g + t h g
214 210 fveq2d b = h b g = h g
215 214 oveq1d b = h b g d c = h g d c
216 215 fveq2d b = h b g d c = h g d c
217 216 neeq1d b = h b g d c 0 h g d c 0
218 213 217 3anbi13d b = h y = g + t b g y = c + r d c b g d c 0 y = g + t h g y = c + r d c h g d c 0
219 218 2rexbidv b = h t r y = g + t b g y = c + r d c b g d c 0 t r y = g + t h g y = c + r d c h g d c 0
220 219 2rexbidv b = h c C n d C n t r y = g + t b g y = c + r d c b g d c 0 c C n d C n t r y = g + t h g y = c + r d c h g d c 0
221 220 cbvrexvw b C n c C n d C n t r y = g + t b g y = c + r d c b g d c 0 h C n c C n d C n t r y = g + t h g y = c + r d c h g d c 0
222 id c = i c = i
223 oveq2 c = i d c = d i
224 223 oveq2d c = i r d c = r d i
225 222 224 oveq12d c = i c + r d c = i + r d i
226 225 eqeq2d c = i y = c + r d c y = i + r d i
227 223 oveq2d c = i h g d c = h g d i
228 227 fveq2d c = i h g d c = h g d i
229 228 neeq1d c = i h g d c 0 h g d i 0
230 226 229 3anbi23d c = i y = g + t h g y = c + r d c h g d c 0 y = g + t h g y = i + r d i h g d i 0
231 230 rexbidv c = i r y = g + t h g y = c + r d c h g d c 0 r y = g + t h g y = i + r d i h g d i 0
232 231 2rexbidv c = i d C n t r y = g + t h g y = c + r d c h g d c 0 d C n t r y = g + t h g y = i + r d i h g d i 0
233 232 cbvrexvw c C n d C n t r y = g + t h g y = c + r d c h g d c 0 i C n d C n t r y = g + t h g y = i + r d i h g d i 0
234 oveq1 d = j d i = j i
235 234 oveq2d d = j r d i = r j i
236 235 oveq2d d = j i + r d i = i + r j i
237 236 eqeq2d d = j y = i + r d i y = i + r j i
238 234 oveq2d d = j h g d i = h g j i
239 238 fveq2d d = j h g d i = h g j i
240 239 neeq1d d = j h g d i 0 h g j i 0
241 237 240 3anbi23d d = j y = g + t h g y = i + r d i h g d i 0 y = g + t h g y = i + r j i h g j i 0
242 241 2rexbidv d = j t r y = g + t h g y = i + r d i h g d i 0 t r y = g + t h g y = i + r j i h g j i 0
243 242 cbvrexvw d C n t r y = g + t h g y = i + r d i h g d i 0 j C n t r y = g + t h g y = i + r j i h g j i 0
244 243 rexbii i C n d C n t r y = g + t h g y = i + r d i h g d i 0 i C n j C n t r y = g + t h g y = i + r j i h g j i 0
245 233 244 bitri c C n d C n t r y = g + t h g y = c + r d c h g d c 0 i C n j C n t r y = g + t h g y = i + r j i h g j i 0
246 245 rexbii h C n c C n d C n t r y = g + t h g y = c + r d c h g d c 0 h C n i C n j C n t r y = g + t h g y = i + r j i h g j i 0
247 221 246 bitri b C n c C n d C n t r y = g + t b g y = c + r d c b g d c 0 h C n i C n j C n t r y = g + t h g y = i + r j i h g j i 0
248 247 rexbii g C n b C n c C n d C n t r y = g + t b g y = c + r d c b g d c 0 g C n h C n i C n j C n t r y = g + t h g y = i + r j i h g j i 0
249 209 248 bitri a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 g C n h C n i C n j C n t r y = g + t h g y = i + r j i h g j i 0
250 195 249 sylibr n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0
251 250 ex n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0
252 simp-4r n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f x C n x C n
253 simplr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n
254 53 252 253 rspcdva n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n
255 61 anbi1d g = a y = g + t h g y i = k l y = a + t h a y i = k l
256 255 rexbidv g = a t y = g + t h g y i = k l t y = a + t h a y i = k l
257 256 2rexbidv g = a k C n l C n t y = g + t h g y i = k l k C n l C n t y = a + t h a y i = k l
258 257 2rexbidv g = a h C n i C n k C n l C n t y = g + t h g y i = k l h C n i C n k C n l C n t y = a + t h a y i = k l
259 258 adantl n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f g = a h C n i C n k C n l C n t y = g + t h g y i = k l h C n i C n k C n l C n t y = a + t h a y i = k l
260 simp-5r n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f x C n x C n
261 simplr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f b C n
262 72 260 261 rspcdva n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f b C n
263 79 anbi1d h = b y = a + t h a y i = k l y = a + t b a y i = k l
264 263 2rexbidv h = b l C n t y = a + t h a y i = k l l C n t y = a + t b a y i = k l
265 264 2rexbidv h = b i C n k C n l C n t y = a + t h a y i = k l i C n k C n l C n t y = a + t b a y i = k l
266 265 adantl n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f h = b i C n k C n l C n t y = a + t h a y i = k l i C n k C n l C n t y = a + t b a y i = k l
267 simp-6r n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f x C n x C n
268 simplr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f c C n
269 89 267 268 rspcdva n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f c C n
270 oveq2 i = c y i = y c
271 270 fveq2d i = c y i = y c
272 271 eqeq1d i = c y i = k l y c = k l
273 272 anbi2d i = c y = a + t b a y i = k l y = a + t b a y c = k l
274 273 rexbidv i = c t y = a + t b a y i = k l t y = a + t b a y c = k l
275 274 2rexbidv i = c k C n l C n t y = a + t b a y i = k l k C n l C n t y = a + t b a y c = k l
276 275 adantl n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f i = c k C n l C n t y = a + t b a y i = k l k C n l C n t y = a + t b a y c = k l
277 fveq2 x = e x = e
278 277 eleq1d x = e x C n e C n
279 simp-7r n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f x C n x C n
280 simplr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f e C n
281 278 279 280 rspcdva n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f e C n
282 oveq1 k = e k l = e l
283 282 fveq2d k = e k l = e l
284 283 eqeq2d k = e y c = k l y c = e l
285 284 anbi2d k = e y = a + t b a y c = k l y = a + t b a y c = e l
286 285 2rexbidv k = e l C n t y = a + t b a y c = k l l C n t y = a + t b a y c = e l
287 286 adantl n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f k = e l C n t y = a + t b a y c = k l l C n t y = a + t b a y c = e l
288 fveq2 x = f x = f
289 288 eleq1d x = f x C n f C n
290 simp-8r n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f x C n x C n
291 simplr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f f C n
292 289 290 291 rspcdva n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f f C n
293 oveq2 l = f e l = e f
294 293 fveq2d l = f e l = e f
295 294 eqeq2d l = f y c = e l y c = e f
296 295 anbi2d l = f y = a + t b a y c = e l y = a + t b a y c = e f
297 296 rexbidv l = f t y = a + t b a y c = e l t y = a + t b a y c = e f
298 297 adantl n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f l = f t y = a + t b a y c = e l t y = a + t b a y c = e f
299 simprl n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y = a + t b a
300 299 fveq2d n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y = a + t b a
301 123 ad9antr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f C n
302 simp-7r n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n
303 301 302 sseldd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f a
304 simplr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f t
305 304 recnd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f t
306 simp-6r n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f b C n
307 301 306 sseldd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f b
308 307 303 subcld n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f b a
309 305 308 mulcld n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f t b a
310 303 309 cjaddd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f a + t b a = a + t b a
311 305 308 cjmuld n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f t b a = t b a
312 304 cjred n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f t = t
313 307 303 cjsubd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f b a = b a
314 312 313 oveq12d n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f t b a = t b a
315 311 314 eqtrd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f t b a = t b a
316 315 oveq2d n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f a + t b a = a + t b a
317 300 310 316 3eqtrd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y = a + t b a
318 simprr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y c = e f
319 49 ad7antr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y
320 simp-5r n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f c C n
321 301 320 sseldd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f c
322 319 321 subcld n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y c
323 322 abscjd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y c = y c
324 simp-4r n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f e C n
325 301 324 sseldd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f e
326 simpllr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f f C n
327 301 326 sseldd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f f
328 325 327 subcld n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f e f
329 328 abscjd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f e f = e f
330 318 323 329 3eqtr4d n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y c = e f
331 319 321 cjsubd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y c = y c
332 331 fveq2d n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y c = y c
333 325 327 cjsubd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f e f = e f
334 333 fveq2d n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f e f = e f
335 330 332 334 3eqtr3d n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y c = e f
336 317 335 jca n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y = a + t b a y c = e f
337 336 ex n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f y = a + t b a y c = e f
338 337 reximdva n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f t y = a + t b a y c = e f
339 338 imp n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f t y = a + t b a y c = e f
340 292 298 339 rspcedvd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f l C n t y = a + t b a y c = e l
341 340 r19.29an n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f l C n t y = a + t b a y c = e l
342 281 287 341 rspcedvd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f k C n l C n t y = a + t b a y c = k l
343 342 r19.29an n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f k C n l C n t y = a + t b a y c = k l
344 269 276 343 rspcedvd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f i C n k C n l C n t y = a + t b a y i = k l
345 344 r19.29an n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f i C n k C n l C n t y = a + t b a y i = k l
346 262 266 345 rspcedvd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f h C n i C n k C n l C n t y = a + t h a y i = k l
347 346 r19.29an n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f h C n i C n k C n l C n t y = a + t h a y i = k l
348 254 259 347 rspcedvd n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f g C n h C n i C n k C n l C n t y = g + t h g y i = k l
349 348 r19.29an n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f g C n h C n i C n k C n l C n t y = g + t h g y i = k l
350 200 anbi1d a = g y = a + t b a y c = e f y = g + t b g y c = e f
351 350 rexbidv a = g t y = a + t b a y c = e f t y = g + t b g y c = e f
352 351 2rexbidv a = g e C n f C n t y = a + t b a y c = e f e C n f C n t y = g + t b g y c = e f
353 352 2rexbidv a = g b C n c C n e C n f C n t y = a + t b a y c = e f b C n c C n e C n f C n t y = g + t b g y c = e f
354 353 cbvrexvw a C n b C n c C n e C n f C n t y = a + t b a y c = e f g C n b C n c C n e C n f C n t y = g + t b g y c = e f
355 213 anbi1d b = h y = g + t b g y c = e f y = g + t h g y c = e f
356 355 2rexbidv b = h f C n t y = g + t b g y c = e f f C n t y = g + t h g y c = e f
357 356 2rexbidv b = h c C n e C n f C n t y = g + t b g y c = e f c C n e C n f C n t y = g + t h g y c = e f
358 357 cbvrexvw b C n c C n e C n f C n t y = g + t b g y c = e f h C n c C n e C n f C n t y = g + t h g y c = e f
359 oveq2 c = i y c = y i
360 359 fveq2d c = i y c = y i
361 360 eqeq1d c = i y c = e f y i = e f
362 361 anbi2d c = i y = g + t h g y c = e f y = g + t h g y i = e f
363 362 rexbidv c = i t y = g + t h g y c = e f t y = g + t h g y i = e f
364 363 2rexbidv c = i e C n f C n t y = g + t h g y c = e f e C n f C n t y = g + t h g y i = e f
365 364 cbvrexvw c C n e C n f C n t y = g + t h g y c = e f i C n e C n f C n t y = g + t h g y i = e f
366 oveq1 e = k e f = k f
367 366 fveq2d e = k e f = k f
368 367 eqeq2d e = k y i = e f y i = k f
369 368 anbi2d e = k y = g + t h g y i = e f y = g + t h g y i = k f
370 369 2rexbidv e = k f C n t y = g + t h g y i = e f f C n t y = g + t h g y i = k f
371 370 cbvrexvw e C n f C n t y = g + t h g y i = e f k C n f C n t y = g + t h g y i = k f
372 oveq2 f = l k f = k l
373 372 fveq2d f = l k f = k l
374 373 eqeq2d f = l y i = k f y i = k l
375 374 anbi2d f = l y = g + t h g y i = k f y = g + t h g y i = k l
376 375 rexbidv f = l t y = g + t h g y i = k f t y = g + t h g y i = k l
377 376 cbvrexvw f C n t y = g + t h g y i = k f l C n t y = g + t h g y i = k l
378 377 rexbii k C n f C n t y = g + t h g y i = k f k C n l C n t y = g + t h g y i = k l
379 371 378 bitri e C n f C n t y = g + t h g y i = e f k C n l C n t y = g + t h g y i = k l
380 379 rexbii i C n e C n f C n t y = g + t h g y i = e f i C n k C n l C n t y = g + t h g y i = k l
381 365 380 bitri c C n e C n f C n t y = g + t h g y c = e f i C n k C n l C n t y = g + t h g y i = k l
382 381 rexbii h C n c C n e C n f C n t y = g + t h g y c = e f h C n i C n k C n l C n t y = g + t h g y i = k l
383 358 382 bitri b C n c C n e C n f C n t y = g + t b g y c = e f h C n i C n k C n l C n t y = g + t h g y i = k l
384 383 rexbii g C n b C n c C n e C n f C n t y = g + t b g y c = e f g C n h C n i C n k C n l C n t y = g + t h g y i = k l
385 354 384 bitri a C n b C n c C n e C n f C n t y = a + t b a y c = e f g C n h C n i C n k C n l C n t y = g + t h g y i = k l
386 349 385 sylibr n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n e C n f C n t y = a + t b a y c = e f
387 386 ex n On x C n x C n y C suc n a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n e C n f C n t y = a + t b a y c = e f
388 simp-4r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f x C n x C n
389 simplr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f a C n
390 53 388 389 rspcdva n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f a C n
391 neeq1 g = a g j a j
392 oveq2 g = a y g = y a
393 392 fveq2d g = a y g = y a
394 393 eqeq1d g = a y g = h i y a = h i
395 391 394 3anbi12d g = a g j y g = h i y j = e f a j y a = h i y j = e f
396 395 rexbidv g = a f C n g j y g = h i y j = e f f C n a j y a = h i y j = e f
397 396 2rexbidv g = a j C n e C n f C n g j y g = h i y j = e f j C n e C n f C n a j y a = h i y j = e f
398 397 2rexbidv g = a h C n i C n j C n e C n f C n g j y g = h i y j = e f h C n i C n j C n e C n f C n a j y a = h i y j = e f
399 398 adantl n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f g = a h C n i C n j C n e C n f C n g j y g = h i y j = e f h C n i C n j C n e C n f C n a j y a = h i y j = e f
400 simp-5r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f x C n x C n
401 simplr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f b C n
402 72 400 401 rspcdva n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f b C n
403 oveq1 h = b h i = b i
404 403 fveq2d h = b h i = b i
405 404 eqeq2d h = b y a = h i y a = b i
406 405 3anbi2d h = b a j y a = h i y j = e f a j y a = b i y j = e f
407 406 2rexbidv h = b e C n f C n a j y a = h i y j = e f e C n f C n a j y a = b i y j = e f
408 407 2rexbidv h = b i C n j C n e C n f C n a j y a = h i y j = e f i C n j C n e C n f C n a j y a = b i y j = e f
409 408 adantl n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f h = b i C n j C n e C n f C n a j y a = h i y j = e f i C n j C n e C n f C n a j y a = b i y j = e f
410 simp-6r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f x C n x C n
411 simplr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f c C n
412 89 410 411 rspcdva n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f c C n
413 oveq2 i = c b i = b c
414 413 fveq2d i = c b i = b c
415 414 eqeq2d i = c y a = b i y a = b c
416 415 3anbi2d i = c a j y a = b i y j = e f a j y a = b c y j = e f
417 416 rexbidv i = c f C n a j y a = b i y j = e f f C n a j y a = b c y j = e f
418 417 2rexbidv i = c j C n e C n f C n a j y a = b i y j = e f j C n e C n f C n a j y a = b c y j = e f
419 418 adantl n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f i = c j C n e C n f C n a j y a = b i y j = e f j C n e C n f C n a j y a = b c y j = e f
420 simp-7r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f x C n x C n
421 simplr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f d C n
422 106 420 421 rspcdva n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f d C n
423 neeq2 j = d a j a d
424 oveq2 j = d y j = y d
425 424 fveq2d j = d y j = y d
426 425 eqeq1d j = d y j = e f y d = e f
427 423 426 3anbi13d j = d a j y a = b c y j = e f a d y a = b c y d = e f
428 427 2rexbidv j = d e C n f C n a j y a = b c y j = e f e C n f C n a d y a = b c y d = e f
429 428 adantl n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f j = d e C n f C n a j y a = b c y j = e f e C n f C n a d y a = b c y d = e f
430 123 ad9antr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d C n
431 simp-7r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d a C n
432 430 431 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d a
433 simp-4r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d d C n
434 430 433 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d d
435 simpr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d a d
436 cj11 a d a = d a = d
437 436 necon3bid a d a d a d
438 437 biimpar a d a d a d
439 432 434 435 438 syl21anc n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d a d
440 439 ex n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d a d
441 simpr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c y a = b c
442 49 ad7antr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c y
443 123 ad9antr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c C n
444 simp-7r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c a C n
445 443 444 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c a
446 442 445 subcld n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c y a
447 446 abscjd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c y a = y a
448 simp-6r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c b C n
449 443 448 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c b
450 simp-5r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c c C n
451 443 450 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c c
452 449 451 subcld n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c b c
453 452 abscjd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c b c = b c
454 441 447 453 3eqtr4d n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c y a = b c
455 442 445 cjsubd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c y a = y a
456 455 fveq2d n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c y a = y a
457 449 451 cjsubd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c b c = b c
458 457 fveq2d n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c b c = b c
459 454 456 458 3eqtr3d n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c y a = b c
460 459 ex n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y a = b c y a = b c
461 49 ad7antr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f y
462 123 ad9antr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f C n
463 simp-4r n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f d C n
464 462 463 sseldd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f d
465 461 464 subcld n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f y d
466 465 abscjd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f y d = y d
467 461 464 cjsubd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f y d = y d
468 467 fveq2d n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f y d = y d
469 simpr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f y d = e f
470 466 468 469 3eqtr3d n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f y d = e f
471 470 ex n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n y d = e f y d = e f
472 440 460 471 3anim123d n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f a d y a = b c y d = e f
473 472 reximdva n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f f C n a d y a = b c y d = e f
474 473 reximdva n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f e C n f C n a d y a = b c y d = e f
475 474 imp n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f e C n f C n a d y a = b c y d = e f
476 422 429 475 rspcedvd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f j C n e C n f C n a j y a = b c y j = e f
477 476 r19.29an n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f j C n e C n f C n a j y a = b c y j = e f
478 412 419 477 rspcedvd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f i C n j C n e C n f C n a j y a = b i y j = e f
479 478 r19.29an n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f i C n j C n e C n f C n a j y a = b i y j = e f
480 402 409 479 rspcedvd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f h C n i C n j C n e C n f C n a j y a = h i y j = e f
481 480 r19.29an n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f h C n i C n j C n e C n f C n a j y a = h i y j = e f
482 390 399 481 rspcedvd n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f g C n h C n i C n j C n e C n f C n g j y g = h i y j = e f
483 482 r19.29an n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f g C n h C n i C n j C n e C n f C n g j y g = h i y j = e f
484 neeq1 a = g a d g d
485 oveq2 a = g y a = y g
486 485 fveq2d a = g y a = y g
487 486 eqeq1d a = g y a = b c y g = b c
488 484 487 3anbi12d a = g a d y a = b c y d = e f g d y g = b c y d = e f
489 488 rexbidv a = g f C n a d y a = b c y d = e f f C n g d y g = b c y d = e f
490 489 2rexbidv a = g d C n e C n f C n a d y a = b c y d = e f d C n e C n f C n g d y g = b c y d = e f
491 490 2rexbidv a = g b C n c C n d C n e C n f C n a d y a = b c y d = e f b C n c C n d C n e C n f C n g d y g = b c y d = e f
492 491 cbvrexvw a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f g C n b C n c C n d C n e C n f C n g d y g = b c y d = e f
493 oveq1 b = h b c = h c
494 493 fveq2d b = h b c = h c
495 494 eqeq2d b = h y g = b c y g = h c
496 495 3anbi2d b = h g d y g = b c y d = e f g d y g = h c y d = e f
497 496 2rexbidv b = h e C n f C n g d y g = b c y d = e f e C n f C n g d y g = h c y d = e f
498 497 2rexbidv b = h c C n d C n e C n f C n g d y g = b c y d = e f c C n d C n e C n f C n g d y g = h c y d = e f
499 498 cbvrexvw b C n c C n d C n e C n f C n g d y g = b c y d = e f h C n c C n d C n e C n f C n g d y g = h c y d = e f
500 oveq2 c = i h c = h i
501 500 fveq2d c = i h c = h i
502 501 eqeq2d c = i y g = h c y g = h i
503 502 3anbi2d c = i g d y g = h c y d = e f g d y g = h i y d = e f
504 503 rexbidv c = i f C n g d y g = h c y d = e f f C n g d y g = h i y d = e f
505 504 2rexbidv c = i d C n e C n f C n g d y g = h c y d = e f d C n e C n f C n g d y g = h i y d = e f
506 505 cbvrexvw c C n d C n e C n f C n g d y g = h c y d = e f i C n d C n e C n f C n g d y g = h i y d = e f
507 neeq2 d = j g d g j
508 oveq2 d = j y d = y j
509 508 fveq2d d = j y d = y j
510 509 eqeq1d d = j y d = e f y j = e f
511 507 510 3anbi13d d = j g d y g = h i y d = e f g j y g = h i y j = e f
512 511 2rexbidv d = j e C n f C n g d y g = h i y d = e f e C n f C n g j y g = h i y j = e f
513 512 cbvrexvw d C n e C n f C n g d y g = h i y d = e f j C n e C n f C n g j y g = h i y j = e f
514 513 rexbii i C n d C n e C n f C n g d y g = h i y d = e f i C n j C n e C n f C n g j y g = h i y j = e f
515 506 514 bitri c C n d C n e C n f C n g d y g = h c y d = e f i C n j C n e C n f C n g j y g = h i y j = e f
516 515 rexbii h C n c C n d C n e C n f C n g d y g = h c y d = e f h C n i C n j C n e C n f C n g j y g = h i y j = e f
517 499 516 bitri b C n c C n d C n e C n f C n g d y g = b c y d = e f h C n i C n j C n e C n f C n g j y g = h i y j = e f
518 517 rexbii g C n b C n c C n d C n e C n f C n g d y g = b c y d = e f g C n h C n i C n j C n e C n f C n g j y g = h i y j = e f
519 492 518 bitri a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f g C n h C n i C n j C n e C n f C n g j y g = h i y j = e f
520 483 519 sylibr n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f
521 520 ex n On x C n x C n y C suc n a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f
522 251 387 521 3orim123d n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f
523 51 522 mpd n On x C n x C n y C suc n a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f
524 50 523 jca n On x C n x C n y C suc n y a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f
525 45 adantr n On x C n x C n y C suc n n On
526 1 525 46 constrsuc n On x C n x C n y C suc n y C suc n y a C n b C n c C n d C n t r y = a + t b a y = c + r d c b a d c 0 a C n b C n c C n e C n f C n t y = a + t b a y c = e f a C n b C n c C n d C n e C n f C n a d y a = b c y d = e f
527 524 526 mpbird n On x C n x C n y C suc n y C suc n
528 527 ralrimiva n On x C n x C n y C suc n y C suc n
529 fveq2 x = y x = y
530 529 eleq1d x = y x C suc n y C suc n
531 530 cbvralvw x C suc n x C suc n y C suc n y C suc n
532 528 531 sylibr n On x C n x C n x C suc n x C suc n
533 532 ex n On x C n x C n x C suc n x C suc n
534 simpr Lim m n m x C n x C n y C m y C m
535 vex m V
536 535 a1i Lim m n m x C n x C n y C m m V
537 simpll Lim m n m x C n x C n y C m Lim m
538 1 536 537 constrlim Lim m n m x C n x C n y C m C m = z m C z
539 534 538 eleqtrd Lim m n m x C n x C n y C m y z m C z
540 eliun y z m C z z m y C z
541 539 540 sylib Lim m n m x C n x C n y C m z m y C z
542 529 eleq1d x = y x C z y C z
543 fveq2 n = z C n = C z
544 543 eleq2d n = z x C n x C z
545 543 544 raleqbidv n = z x C n x C n x C z x C z
546 simp-4r Lim m n m x C n x C n y C m z m y C z n m x C n x C n
547 simplr Lim m n m x C n x C n y C m z m y C z z m
548 545 546 547 rspcdva Lim m n m x C n x C n y C m z m y C z x C z x C z
549 simpr Lim m n m x C n x C n y C m z m y C z y C z
550 542 548 549 rspcdva Lim m n m x C n x C n y C m z m y C z y C z
551 550 ex Lim m n m x C n x C n y C m z m y C z y C z
552 551 reximdva Lim m n m x C n x C n y C m z m y C z z m y C z
553 541 552 mpd Lim m n m x C n x C n y C m z m y C z
554 eliun y z m C z z m y C z
555 553 554 sylibr Lim m n m x C n x C n y C m y z m C z
556 555 538 eleqtrrd Lim m n m x C n x C n y C m y C m
557 556 ralrimiva Lim m n m x C n x C n y C m y C m
558 529 eleq1d x = y x C m y C m
559 558 cbvralvw x C m x C m y C m y C m
560 557 559 sylibr Lim m n m x C n x C n x C m x C m
561 560 ex Lim m n m x C n x C n x C m x C m
562 6 9 12 15 44 533 561 tfinds N On x C N x C N
563 2 562 syl φ x C N x C N
564 fveq2 x = X x = X
565 564 eleq1d x = X x C N X C N
566 565 adantl φ x = X x C N X C N
567 3 566 rspcdv φ x C N x C N X C N
568 563 567 mpd φ X C N