Metamath Proof Explorer


Theorem constrconj

Description: If a point X of the complex plane is constructible, so is its conjugate ( *X ) . (Proposed by Saveliy Skresanov, 25-Jun-2025.) (Contributed by Thierry Arnoux, 1-Jul-2025)

Ref Expression
Hypotheses constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
constrconj.1 ( 𝜑𝑁 ∈ On )
constrconj.2 ( 𝜑𝑋 ∈ ( 𝐶𝑁 ) )
Assertion constrconj ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ( 𝐶𝑁 ) )

Proof

Step Hyp Ref Expression
1 constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
2 constrconj.1 ( 𝜑𝑁 ∈ On )
3 constrconj.2 ( 𝜑𝑋 ∈ ( 𝐶𝑁 ) )
4 fveq2 ( 𝑚 = ∅ → ( 𝐶𝑚 ) = ( 𝐶 ‘ ∅ ) )
5 4 eleq2d ( 𝑚 = ∅ → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) )
6 4 5 raleqbidv ( 𝑚 = ∅ → ( ∀ 𝑥 ∈ ( 𝐶𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ ∅ ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) )
7 fveq2 ( 𝑚 = 𝑛 → ( 𝐶𝑚 ) = ( 𝐶𝑛 ) )
8 7 eleq2d ( 𝑚 = 𝑛 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) )
9 7 8 raleqbidv ( 𝑚 = 𝑛 → ( ∀ 𝑥 ∈ ( 𝐶𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) )
10 fveq2 ( 𝑚 = suc 𝑛 → ( 𝐶𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) )
11 10 eleq2d ( 𝑚 = suc 𝑛 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) )
12 10 11 raleqbidv ( 𝑚 = suc 𝑛 → ( ∀ 𝑥 ∈ ( 𝐶𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) )
13 fveq2 ( 𝑚 = 𝑁 → ( 𝐶𝑚 ) = ( 𝐶𝑁 ) )
14 13 eleq2d ( 𝑚 = 𝑁 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑁 ) ) )
15 13 14 raleqbidv ( 𝑚 = 𝑁 → ( ∀ 𝑥 ∈ ( 𝐶𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑁 ) ) )
16 simpr ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → 𝑥 = 0 )
17 16 fveq2d ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 0 ) )
18 cj0 ( ∗ ‘ 0 ) = 0
19 17 18 eqtrdi ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) = 0 )
20 c0ex 0 ∈ V
21 20 prid1 0 ∈ { 0 , 1 }
22 21 a1i ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → 0 ∈ { 0 , 1 } )
23 19 22 eqeltrd ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) ∈ { 0 , 1 } )
24 1 constr0 ( 𝐶 ‘ ∅ ) = { 0 , 1 }
25 24 a1i ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( 𝐶 ‘ ∅ ) = { 0 , 1 } )
26 23 25 eleqtrrd ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) )
27 simpr ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → 𝑥 = 1 )
28 27 fveq2d ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 1 ) )
29 1re 1 ∈ ℝ
30 cjre ( 1 ∈ ℝ → ( ∗ ‘ 1 ) = 1 )
31 29 30 ax-mp ( ∗ ‘ 1 ) = 1
32 28 31 eqtrdi ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) = 1 )
33 1ex 1 ∈ V
34 33 prid2 1 ∈ { 0 , 1 }
35 34 a1i ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → 1 ∈ { 0 , 1 } )
36 32 35 eqeltrd ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) ∈ { 0 , 1 } )
37 24 a1i ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( 𝐶 ‘ ∅ ) = { 0 , 1 } )
38 36 37 eleqtrrd ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) )
39 24 eleq2i ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ↔ 𝑥 ∈ { 0 , 1 } )
40 39 biimpi ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) → 𝑥 ∈ { 0 , 1 } )
41 elpri ( 𝑥 ∈ { 0 , 1 } → ( 𝑥 = 0 ∨ 𝑥 = 1 ) )
42 40 41 syl ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) → ( 𝑥 = 0 ∨ 𝑥 = 1 ) )
43 26 38 42 mpjaodan ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) → ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) )
44 43 rgen 𝑥 ∈ ( 𝐶 ‘ ∅ ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ )
45 simpl ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) → 𝑛 ∈ On )
46 eqid ( 𝐶𝑛 ) = ( 𝐶𝑛 )
47 1 45 46 constrsuc ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) → ( 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( 𝑦 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) ) )
48 47 biimpa ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( 𝑦 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
49 48 simpld ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → 𝑦 ∈ ℂ )
50 49 cjcld ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∗ ‘ 𝑦 ) ∈ ℂ )
51 48 simprd ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
52 fveq2 ( 𝑥 = 𝑎 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑎 ) )
53 52 eleq1d ( 𝑥 = 𝑎 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ↔ ( ∗ ‘ 𝑎 ) ∈ ( 𝐶𝑛 ) ) )
54 simp-4r ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
55 simplr ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ( 𝐶𝑛 ) )
56 53 54 55 rspcdva ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶𝑛 ) )
57 id ( 𝑔 = ( ∗ ‘ 𝑎 ) → 𝑔 = ( ∗ ‘ 𝑎 ) )
58 oveq2 ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑔 ) = ( − ( ∗ ‘ 𝑎 ) ) )
59 58 oveq2d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑡 · ( 𝑔 ) ) = ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) )
60 57 59 oveq12d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) )
61 60 eqeq2d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ) )
62 58 fveq2d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∗ ‘ ( 𝑔 ) ) = ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) )
63 62 oveq1d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) = ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) )
64 63 fveq2d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) )
65 64 neeq1d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
66 61 65 3anbi13d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
67 66 rexbidv ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
68 67 2rexbidv ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
69 68 2rexbidv ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
70 69 adantl ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ∧ 𝑔 = ( ∗ ‘ 𝑎 ) ) → ( ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
71 fveq2 ( 𝑥 = 𝑏 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑏 ) )
72 71 eleq1d ( 𝑥 = 𝑏 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ↔ ( ∗ ‘ 𝑏 ) ∈ ( 𝐶𝑛 ) ) )
73 simp-5r ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
74 simplr ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ( 𝐶𝑛 ) )
75 72 73 74 rspcdva ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶𝑛 ) )
76 oveq1 ( = ( ∗ ‘ 𝑏 ) → ( − ( ∗ ‘ 𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) )
77 76 oveq2d ( = ( ∗ ‘ 𝑏 ) → ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) )
78 77 oveq2d ( = ( ∗ ‘ 𝑏 ) → ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) )
79 78 eqeq2d ( = ( ∗ ‘ 𝑏 ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) )
80 76 fveq2d ( = ( ∗ ‘ 𝑏 ) → ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) = ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) )
81 80 oveq1d ( = ( ∗ ‘ 𝑏 ) → ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) )
82 81 fveq2d ( = ( ∗ ‘ 𝑏 ) → ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) )
83 82 neeq1d ( = ( ∗ ‘ 𝑏 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
84 79 83 3anbi13d ( = ( ∗ ‘ 𝑏 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
85 84 2rexbidv ( = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
86 85 2rexbidv ( = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
87 86 adantl ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ∧ = ( ∗ ‘ 𝑏 ) ) → ( ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
88 fveq2 ( 𝑥 = 𝑐 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑐 ) )
89 88 eleq1d ( 𝑥 = 𝑐 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ↔ ( ∗ ‘ 𝑐 ) ∈ ( 𝐶𝑛 ) ) )
90 simp-6r ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
91 simplr ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ( 𝐶𝑛 ) )
92 89 90 91 rspcdva ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶𝑛 ) )
93 id ( 𝑖 = ( ∗ ‘ 𝑐 ) → 𝑖 = ( ∗ ‘ 𝑐 ) )
94 oveq2 ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( 𝑗𝑖 ) = ( 𝑗 − ( ∗ ‘ 𝑐 ) ) )
95 94 oveq2d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( 𝑟 · ( 𝑗𝑖 ) ) = ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) )
96 93 95 oveq12d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) )
97 96 eqeq2d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ) )
98 94 oveq2d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) )
99 98 fveq2d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) )
100 99 neeq1d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) )
101 97 100 3anbi23d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
102 101 rexbidv ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
103 102 2rexbidv ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
104 103 adantl ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ∧ 𝑖 = ( ∗ ‘ 𝑐 ) ) → ( ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
105 fveq2 ( 𝑥 = 𝑑 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑑 ) )
106 105 eleq1d ( 𝑥 = 𝑑 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ↔ ( ∗ ‘ 𝑑 ) ∈ ( 𝐶𝑛 ) ) )
107 simp-7r ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
108 simplr ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ( 𝐶𝑛 ) )
109 106 107 108 rspcdva ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑑 ) ∈ ( 𝐶𝑛 ) )
110 oveq1 ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( 𝑗 − ( ∗ ‘ 𝑐 ) ) = ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) )
111 110 oveq2d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) = ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) )
112 111 oveq2d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) )
113 112 eqeq2d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) )
114 110 oveq2d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) )
115 114 fveq2d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) )
116 115 neeq1d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) )
117 113 116 3anbi23d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
118 117 2rexbidv ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
119 118 adantl ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ∧ 𝑗 = ( ∗ ‘ 𝑑 ) ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
120 simpr1 ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) )
121 120 fveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ) )
122 id ( 𝑛 ∈ On → 𝑛 ∈ On )
123 1 122 constrsscn ( 𝑛 ∈ On → ( 𝐶𝑛 ) ⊆ ℂ )
124 123 ad9antr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( 𝐶𝑛 ) ⊆ ℂ )
125 simp-7r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ( 𝐶𝑛 ) )
126 124 125 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ℂ )
127 simpllr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑡 ∈ ℝ )
128 127 recnd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑡 ∈ ℂ )
129 simp-6r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ( 𝐶𝑛 ) )
130 124 129 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ℂ )
131 130 126 subcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( 𝑏𝑎 ) ∈ ℂ )
132 128 131 mulcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( 𝑡 · ( 𝑏𝑎 ) ) ∈ ℂ )
133 126 132 cjaddd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏𝑎 ) ) ) ) )
134 128 131 cjmuld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏𝑎 ) ) ) = ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏𝑎 ) ) ) )
135 127 cjred ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑡 ) = 𝑡 )
136 130 126 cjsubd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑏𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) )
137 135 136 oveq12d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) )
138 134 137 eqtrd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) )
139 138 oveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) )
140 121 133 139 3eqtrd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) )
141 simpr2 ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) )
142 141 fveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ) )
143 simp-5r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ( 𝐶𝑛 ) )
144 124 143 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ℂ )
145 simplr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑟 ∈ ℝ )
146 145 recnd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑟 ∈ ℂ )
147 simp-4r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ( 𝐶𝑛 ) )
148 124 147 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ℂ )
149 148 144 subcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( 𝑑𝑐 ) ∈ ℂ )
150 146 149 mulcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( 𝑟 · ( 𝑑𝑐 ) ) ∈ ℂ )
151 144 150 cjaddd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( ∗ ‘ ( 𝑟 · ( 𝑑𝑐 ) ) ) ) )
152 146 149 cjmuld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑟 · ( 𝑑𝑐 ) ) ) = ( ( ∗ ‘ 𝑟 ) · ( ∗ ‘ ( 𝑑𝑐 ) ) ) )
153 145 cjred ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑟 ) = 𝑟 )
154 148 144 cjsubd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑑𝑐 ) ) = ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) )
155 153 154 oveq12d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑟 ) · ( ∗ ‘ ( 𝑑𝑐 ) ) ) = ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) )
156 152 155 eqtrd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑟 · ( 𝑑𝑐 ) ) ) = ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) )
157 156 oveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑐 ) + ( ∗ ‘ ( 𝑟 · ( 𝑑𝑐 ) ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) )
158 142 151 157 3eqtrd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) )
159 131 cjcjd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ ( 𝑏𝑎 ) ) ) = ( 𝑏𝑎 ) )
160 159 oveq1d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ∗ ‘ ( 𝑏𝑎 ) ) ) · ( ∗ ‘ ( 𝑑𝑐 ) ) ) = ( ( 𝑏𝑎 ) · ( ∗ ‘ ( 𝑑𝑐 ) ) ) )
161 131 cjcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑏𝑎 ) ) ∈ ℂ )
162 161 149 cjmuld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ ( 𝑏𝑎 ) ) ) · ( ∗ ‘ ( 𝑑𝑐 ) ) ) )
163 130 cjcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑏 ) ∈ ℂ )
164 126 cjcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑎 ) ∈ ℂ )
165 163 164 cjsubd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝑏 ) ) − ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) ) )
166 130 cjcjd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ 𝑏 ) ) = 𝑏 )
167 126 cjcjd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) = 𝑎 )
168 166 167 oveq12d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ∗ ‘ 𝑏 ) ) − ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) ) = ( 𝑏𝑎 ) )
169 165 168 eqtrd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) = ( 𝑏𝑎 ) )
170 154 eqcomd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) = ( ∗ ‘ ( 𝑑𝑐 ) ) )
171 169 170 oveq12d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) = ( ( 𝑏𝑎 ) · ( ∗ ‘ ( 𝑑𝑐 ) ) ) )
172 160 162 171 3eqtr4rd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) = ( ∗ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) )
173 172 fveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) = ( ℑ ‘ ( ∗ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ) )
174 161 149 mulcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ∈ ℂ )
175 174 imcjd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ∗ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ) = - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) )
176 173 175 eqtrd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) = - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) )
177 simpr3 ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 )
178 174 imcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ∈ ℝ )
179 178 recnd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ∈ ℂ )
180 179 negne0bd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
181 177 180 mpbid ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 )
182 176 181 eqnetrd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 )
183 140 158 182 3jca ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) )
184 183 ex ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
185 184 reximdva ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) → ( ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) → ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
186 185 reximdva ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) → ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) )
187 186 imp ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) )
188 109 119 187 rspcedvd ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) )
189 188 r19.29an ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) )
190 92 104 189 rspcedvd ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
191 190 r19.29an ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
192 75 87 191 rspcedvd ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
193 192 r19.29an ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
194 56 70 193 rspcedvd ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
195 194 r19.29an ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
196 id ( 𝑎 = 𝑔𝑎 = 𝑔 )
197 oveq2 ( 𝑎 = 𝑔 → ( 𝑏𝑎 ) = ( 𝑏𝑔 ) )
198 197 oveq2d ( 𝑎 = 𝑔 → ( 𝑡 · ( 𝑏𝑎 ) ) = ( 𝑡 · ( 𝑏𝑔 ) ) )
199 196 198 oveq12d ( 𝑎 = 𝑔 → ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) )
200 199 eqeq2d ( 𝑎 = 𝑔 → ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ) )
201 197 fveq2d ( 𝑎 = 𝑔 → ( ∗ ‘ ( 𝑏𝑎 ) ) = ( ∗ ‘ ( 𝑏𝑔 ) ) )
202 201 oveq1d ( 𝑎 = 𝑔 → ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) )
203 202 fveq2d ( 𝑎 = 𝑔 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) )
204 203 neeq1d ( 𝑎 = 𝑔 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
205 200 204 3anbi13d ( 𝑎 = 𝑔 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
206 205 rexbidv ( 𝑎 = 𝑔 → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
207 206 2rexbidv ( 𝑎 = 𝑔 → ( ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
208 207 2rexbidv ( 𝑎 = 𝑔 → ( ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
209 208 cbvrexvw ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
210 oveq1 ( 𝑏 = → ( 𝑏𝑔 ) = ( 𝑔 ) )
211 210 oveq2d ( 𝑏 = → ( 𝑡 · ( 𝑏𝑔 ) ) = ( 𝑡 · ( 𝑔 ) ) )
212 211 oveq2d ( 𝑏 = → ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) )
213 212 eqeq2d ( 𝑏 = → ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ) )
214 210 fveq2d ( 𝑏 = → ( ∗ ‘ ( 𝑏𝑔 ) ) = ( ∗ ‘ ( 𝑔 ) ) )
215 214 oveq1d ( 𝑏 = → ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) )
216 215 fveq2d ( 𝑏 = → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) )
217 216 neeq1d ( 𝑏 = → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
218 213 217 3anbi13d ( 𝑏 = → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
219 218 2rexbidv ( 𝑏 = → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
220 219 2rexbidv ( 𝑏 = → ( ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
221 220 cbvrexvw ( ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
222 id ( 𝑐 = 𝑖𝑐 = 𝑖 )
223 oveq2 ( 𝑐 = 𝑖 → ( 𝑑𝑐 ) = ( 𝑑𝑖 ) )
224 223 oveq2d ( 𝑐 = 𝑖 → ( 𝑟 · ( 𝑑𝑐 ) ) = ( 𝑟 · ( 𝑑𝑖 ) ) )
225 222 224 oveq12d ( 𝑐 = 𝑖 → ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) )
226 225 eqeq2d ( 𝑐 = 𝑖 → ( ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ) )
227 223 oveq2d ( 𝑐 = 𝑖 → ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) )
228 227 fveq2d ( 𝑐 = 𝑖 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) )
229 228 neeq1d ( 𝑐 = 𝑖 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ) )
230 226 229 3anbi23d ( 𝑐 = 𝑖 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ) ) )
231 230 rexbidv ( 𝑐 = 𝑖 → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ) ) )
232 231 2rexbidv ( 𝑐 = 𝑖 → ( ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ) ) )
233 232 cbvrexvw ( ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ) )
234 oveq1 ( 𝑑 = 𝑗 → ( 𝑑𝑖 ) = ( 𝑗𝑖 ) )
235 234 oveq2d ( 𝑑 = 𝑗 → ( 𝑟 · ( 𝑑𝑖 ) ) = ( 𝑟 · ( 𝑗𝑖 ) ) )
236 235 oveq2d ( 𝑑 = 𝑗 → ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) )
237 236 eqeq2d ( 𝑑 = 𝑗 → ( ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ) )
238 234 oveq2d ( 𝑑 = 𝑗 → ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) = ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) )
239 238 fveq2d ( 𝑑 = 𝑗 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) )
240 239 neeq1d ( 𝑑 = 𝑗 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
241 237 240 3anbi23d ( 𝑑 = 𝑗 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
242 241 2rexbidv ( 𝑑 = 𝑗 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) ) )
243 242 cbvrexvw ( ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
244 243 rexbii ( ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
245 233 244 bitri ( ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
246 245 rexbii ( ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
247 221 246 bitri ( ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
248 247 rexbii ( ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑔 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
249 209 248 bitri ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑔 ) ) · ( 𝑗𝑖 ) ) ) ≠ 0 ) )
250 195 249 sylibr ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
251 250 ex ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) → ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
252 simp-4r ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
253 simplr ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶𝑛 ) )
254 53 252 253 rspcdva ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶𝑛 ) )
255 61 anbi1d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
256 255 rexbidv ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
257 256 2rexbidv ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
258 257 2rexbidv ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
259 258 adantl ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ∧ 𝑔 = ( ∗ ‘ 𝑎 ) ) → ( ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
260 simp-5r ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
261 simplr ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶𝑛 ) )
262 72 260 261 rspcdva ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶𝑛 ) )
263 79 anbi1d ( = ( ∗ ‘ 𝑏 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
264 263 2rexbidv ( = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
265 264 2rexbidv ( = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
266 265 adantl ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ∧ = ( ∗ ‘ 𝑏 ) ) → ( ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
267 simp-6r ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
268 simplr ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶𝑛 ) )
269 89 267 268 rspcdva ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶𝑛 ) )
270 oveq2 ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ 𝑦 ) − 𝑖 ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) )
271 270 fveq2d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) )
272 271 eqeq1d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
273 272 anbi2d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
274 273 rexbidv ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
275 274 2rexbidv ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
276 275 adantl ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ∧ 𝑖 = ( ∗ ‘ 𝑐 ) ) → ( ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
277 fveq2 ( 𝑥 = 𝑒 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑒 ) )
278 277 eleq1d ( 𝑥 = 𝑒 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ↔ ( ∗ ‘ 𝑒 ) ∈ ( 𝐶𝑛 ) ) )
279 simp-7r ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
280 simplr ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑒 ∈ ( 𝐶𝑛 ) )
281 278 279 280 rspcdva ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑒 ) ∈ ( 𝐶𝑛 ) )
282 oveq1 ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( 𝑘𝑙 ) = ( ( ∗ ‘ 𝑒 ) − 𝑙 ) )
283 282 fveq2d ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( abs ‘ ( 𝑘𝑙 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) )
284 283 eqeq2d ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) )
285 284 anbi2d ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) )
286 285 2rexbidv ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) )
287 286 adantl ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ∧ 𝑘 = ( ∗ ‘ 𝑒 ) ) → ( ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) )
288 fveq2 ( 𝑥 = 𝑓 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑓 ) )
289 288 eleq1d ( 𝑥 = 𝑓 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ↔ ( ∗ ‘ 𝑓 ) ∈ ( 𝐶𝑛 ) ) )
290 simp-8r ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
291 simplr ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑓 ∈ ( 𝐶𝑛 ) )
292 289 290 291 rspcdva ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑓 ) ∈ ( 𝐶𝑛 ) )
293 oveq2 ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ( ∗ ‘ 𝑒 ) − 𝑙 ) = ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) )
294 293 fveq2d ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) )
295 294 eqeq2d ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) )
296 295 anbi2d ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) )
297 296 rexbidv ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) )
298 297 adantl ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ∧ 𝑙 = ( ∗ ‘ 𝑓 ) ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) )
299 simprl ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) )
300 299 fveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ) )
301 123 ad9antr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( 𝐶𝑛 ) ⊆ ℂ )
302 simp-7r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶𝑛 ) )
303 301 302 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑎 ∈ ℂ )
304 simplr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑡 ∈ ℝ )
305 304 recnd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑡 ∈ ℂ )
306 simp-6r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶𝑛 ) )
307 301 306 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑏 ∈ ℂ )
308 307 303 subcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( 𝑏𝑎 ) ∈ ℂ )
309 305 308 mulcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( 𝑡 · ( 𝑏𝑎 ) ) ∈ ℂ )
310 303 309 cjaddd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏𝑎 ) ) ) ) )
311 305 308 cjmuld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏𝑎 ) ) ) = ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏𝑎 ) ) ) )
312 304 cjred ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑡 ) = 𝑡 )
313 307 303 cjsubd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑏𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) )
314 312 313 oveq12d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) )
315 311 314 eqtrd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) )
316 315 oveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) )
317 300 310 316 3eqtrd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) )
318 simprr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) )
319 49 ad7antr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑦 ∈ ℂ )
320 simp-5r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶𝑛 ) )
321 301 320 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑐 ∈ ℂ )
322 319 321 subcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( 𝑦𝑐 ) ∈ ℂ )
323 322 abscjd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦𝑐 ) ) ) = ( abs ‘ ( 𝑦𝑐 ) ) )
324 simp-4r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑒 ∈ ( 𝐶𝑛 ) )
325 301 324 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑒 ∈ ℂ )
326 simpllr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑓 ∈ ( 𝐶𝑛 ) )
327 301 326 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑓 ∈ ℂ )
328 325 327 subcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( 𝑒𝑓 ) ∈ ℂ )
329 328 abscjd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑒𝑓 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) )
330 318 323 329 3eqtr4d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦𝑐 ) ) ) = ( abs ‘ ( ∗ ‘ ( 𝑒𝑓 ) ) ) )
331 319 321 cjsubd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑦𝑐 ) ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) )
332 331 fveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) )
333 325 327 cjsubd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑒𝑓 ) ) = ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) )
334 333 fveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑒𝑓 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) )
335 330 332 334 3eqtr3d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) )
336 317 335 jca ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) )
337 336 ex ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) )
338 337 reximdva ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) → ( ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) )
339 338 imp ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) )
340 292 298 339 rspcedvd ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) )
341 340 r19.29an ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) )
342 281 287 341 rspcedvd ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
343 342 r19.29an ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
344 269 276 343 rspcedvd ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
345 344 r19.29an ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
346 262 266 345 rspcedvd ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
347 346 r19.29an ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
348 254 259 347 rspcedvd ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
349 348 r19.29an ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
350 200 anbi1d ( 𝑎 = 𝑔 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
351 350 rexbidv ( 𝑎 = 𝑔 → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
352 351 2rexbidv ( 𝑎 = 𝑔 → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
353 352 2rexbidv ( 𝑎 = 𝑔 → ( ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
354 353 cbvrexvw ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
355 213 anbi1d ( 𝑏 = → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
356 355 2rexbidv ( 𝑏 = → ( ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
357 356 2rexbidv ( 𝑏 = → ( ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
358 357 cbvrexvw ( ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
359 oveq2 ( 𝑐 = 𝑖 → ( ( ∗ ‘ 𝑦 ) − 𝑐 ) = ( ( ∗ ‘ 𝑦 ) − 𝑖 ) )
360 359 fveq2d ( 𝑐 = 𝑖 → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) )
361 360 eqeq1d ( 𝑐 = 𝑖 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
362 361 anbi2d ( 𝑐 = 𝑖 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
363 362 rexbidv ( 𝑐 = 𝑖 → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
364 363 2rexbidv ( 𝑐 = 𝑖 → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
365 364 cbvrexvw ( ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
366 oveq1 ( 𝑒 = 𝑘 → ( 𝑒𝑓 ) = ( 𝑘𝑓 ) )
367 366 fveq2d ( 𝑒 = 𝑘 → ( abs ‘ ( 𝑒𝑓 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) )
368 367 eqeq2d ( 𝑒 = 𝑘 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) ) )
369 368 anbi2d ( 𝑒 = 𝑘 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) ) ) )
370 369 2rexbidv ( 𝑒 = 𝑘 → ( ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) ) ) )
371 370 cbvrexvw ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) ) )
372 oveq2 ( 𝑓 = 𝑙 → ( 𝑘𝑓 ) = ( 𝑘𝑙 ) )
373 372 fveq2d ( 𝑓 = 𝑙 → ( abs ‘ ( 𝑘𝑓 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) )
374 373 eqeq2d ( 𝑓 = 𝑙 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
375 374 anbi2d ( 𝑓 = 𝑙 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
376 375 rexbidv ( 𝑓 = 𝑙 → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) ) )
377 376 cbvrexvw ( ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
378 377 rexbii ( ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑓 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
379 371 378 bitri ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
380 379 rexbii ( ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
381 365 380 bitri ( ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
382 381 rexbii ( ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
383 358 382 bitri ( ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
384 383 rexbii ( ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
385 354 384 bitri ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑘 ∈ ( 𝐶𝑛 ) ∃ 𝑙 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘𝑙 ) ) ) )
386 349 385 sylibr ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
387 386 ex ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
388 simp-4r ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
389 simplr ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶𝑛 ) )
390 53 388 389 rspcdva ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶𝑛 ) )
391 neeq1 ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑔𝑗 ↔ ( ∗ ‘ 𝑎 ) ≠ 𝑗 ) )
392 oveq2 ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ∗ ‘ 𝑦 ) − 𝑔 ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) )
393 392 fveq2d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) )
394 393 eqeq1d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ) )
395 391 394 3anbi12d ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
396 395 rexbidv ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
397 396 2rexbidv ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
398 397 2rexbidv ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
399 398 adantl ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ∧ 𝑔 = ( ∗ ‘ 𝑎 ) ) → ( ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
400 simp-5r ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
401 simplr ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶𝑛 ) )
402 72 400 401 rspcdva ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶𝑛 ) )
403 oveq1 ( = ( ∗ ‘ 𝑏 ) → ( 𝑖 ) = ( ( ∗ ‘ 𝑏 ) − 𝑖 ) )
404 403 fveq2d ( = ( ∗ ‘ 𝑏 ) → ( abs ‘ ( 𝑖 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) )
405 404 eqeq2d ( = ( ∗ ‘ 𝑏 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ) )
406 405 3anbi2d ( = ( ∗ ‘ 𝑏 ) → ( ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
407 406 2rexbidv ( = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
408 407 2rexbidv ( = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
409 408 adantl ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ∧ = ( ∗ ‘ 𝑏 ) ) → ( ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
410 simp-6r ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
411 simplr ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶𝑛 ) )
412 89 410 411 rspcdva ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶𝑛 ) )
413 oveq2 ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ 𝑏 ) − 𝑖 ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) )
414 413 fveq2d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) )
415 414 eqeq2d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) )
416 415 3anbi2d ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
417 416 rexbidv ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
418 417 2rexbidv ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
419 418 adantl ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ∧ 𝑖 = ( ∗ ‘ 𝑐 ) ) → ( ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
420 simp-7r ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
421 simplr ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → 𝑑 ∈ ( 𝐶𝑛 ) )
422 106 420 421 rspcdva ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∗ ‘ 𝑑 ) ∈ ( 𝐶𝑛 ) )
423 neeq2 ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ↔ ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) )
424 oveq2 ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑦 ) − 𝑗 ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) )
425 424 fveq2d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) )
426 425 eqeq1d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
427 423 426 3anbi13d ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
428 427 2rexbidv ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
429 428 adantl ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ∧ 𝑗 = ( ∗ ‘ 𝑑 ) ) → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
430 123 ad9antr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑎𝑑 ) → ( 𝐶𝑛 ) ⊆ ℂ )
431 simp-7r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑎𝑑 ) → 𝑎 ∈ ( 𝐶𝑛 ) )
432 430 431 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑎𝑑 ) → 𝑎 ∈ ℂ )
433 simp-4r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑎𝑑 ) → 𝑑 ∈ ( 𝐶𝑛 ) )
434 430 433 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑎𝑑 ) → 𝑑 ∈ ℂ )
435 simpr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑎𝑑 ) → 𝑎𝑑 )
436 cj11 ( ( 𝑎 ∈ ℂ ∧ 𝑑 ∈ ℂ ) → ( ( ∗ ‘ 𝑎 ) = ( ∗ ‘ 𝑑 ) ↔ 𝑎 = 𝑑 ) )
437 436 necon3bid ( ( 𝑎 ∈ ℂ ∧ 𝑑 ∈ ℂ ) → ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ↔ 𝑎𝑑 ) )
438 437 biimpar ( ( ( 𝑎 ∈ ℂ ∧ 𝑑 ∈ ℂ ) ∧ 𝑎𝑑 ) → ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) )
439 432 434 435 438 syl21anc ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ 𝑎𝑑 ) → ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) )
440 439 ex ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) → ( 𝑎𝑑 → ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) )
441 simpr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) )
442 49 ad7antr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → 𝑦 ∈ ℂ )
443 123 ad9antr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( 𝐶𝑛 ) ⊆ ℂ )
444 simp-7r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → 𝑎 ∈ ( 𝐶𝑛 ) )
445 443 444 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → 𝑎 ∈ ℂ )
446 442 445 subcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( 𝑦𝑎 ) ∈ ℂ )
447 446 abscjd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦𝑎 ) ) ) = ( abs ‘ ( 𝑦𝑎 ) ) )
448 simp-6r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → 𝑏 ∈ ( 𝐶𝑛 ) )
449 443 448 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → 𝑏 ∈ ℂ )
450 simp-5r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → 𝑐 ∈ ( 𝐶𝑛 ) )
451 443 450 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → 𝑐 ∈ ℂ )
452 449 451 subcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( 𝑏𝑐 ) ∈ ℂ )
453 452 abscjd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑏𝑐 ) ) ) = ( abs ‘ ( 𝑏𝑐 ) ) )
454 441 447 453 3eqtr4d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦𝑎 ) ) ) = ( abs ‘ ( ∗ ‘ ( 𝑏𝑐 ) ) ) )
455 442 445 cjsubd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( ∗ ‘ ( 𝑦𝑎 ) ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) )
456 455 fveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) )
457 449 451 cjsubd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( ∗ ‘ ( 𝑏𝑐 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) )
458 457 fveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑏𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) )
459 454 456 458 3eqtr3d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) )
460 459 ex ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) → ( ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) )
461 49 ad7antr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → 𝑦 ∈ ℂ )
462 123 ad9antr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ( 𝐶𝑛 ) ⊆ ℂ )
463 simp-4r ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → 𝑑 ∈ ( 𝐶𝑛 ) )
464 462 463 sseldd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → 𝑑 ∈ ℂ )
465 461 464 subcld ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ( 𝑦𝑑 ) ∈ ℂ )
466 465 abscjd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦𝑑 ) ) ) = ( abs ‘ ( 𝑦𝑑 ) ) )
467 461 464 cjsubd ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ( ∗ ‘ ( 𝑦𝑑 ) ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) )
468 467 fveq2d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦𝑑 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) )
469 simpr ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) )
470 466 468 469 3eqtr3d ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) )
471 470 ex ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) → ( ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
472 440 460 471 3anim123d ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶𝑛 ) ) → ( ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
473 472 reximdva ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶𝑛 ) ) → ( ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
474 473 reximdva ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
475 474 imp ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
476 422 429 475 rspcedvd ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
477 476 r19.29an ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
478 412 419 477 rspcedvd ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
479 478 r19.29an ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
480 402 409 479 rspcedvd ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
481 480 r19.29an ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
482 390 399 481 rspcedvd ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
483 482 r19.29an ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
484 neeq1 ( 𝑎 = 𝑔 → ( 𝑎𝑑𝑔𝑑 ) )
485 oveq2 ( 𝑎 = 𝑔 → ( ( ∗ ‘ 𝑦 ) − 𝑎 ) = ( ( ∗ ‘ 𝑦 ) − 𝑔 ) )
486 485 fveq2d ( 𝑎 = 𝑔 → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) )
487 486 eqeq1d ( 𝑎 = 𝑔 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) )
488 484 487 3anbi12d ( 𝑎 = 𝑔 → ( ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
489 488 rexbidv ( 𝑎 = 𝑔 → ( ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
490 489 2rexbidv ( 𝑎 = 𝑔 → ( ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
491 490 2rexbidv ( 𝑎 = 𝑔 → ( ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
492 491 cbvrexvw ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
493 oveq1 ( 𝑏 = → ( 𝑏𝑐 ) = ( 𝑐 ) )
494 493 fveq2d ( 𝑏 = → ( abs ‘ ( 𝑏𝑐 ) ) = ( abs ‘ ( 𝑐 ) ) )
495 494 eqeq2d ( 𝑏 = → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ) )
496 495 3anbi2d ( 𝑏 = → ( ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
497 496 2rexbidv ( 𝑏 = → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
498 497 2rexbidv ( 𝑏 = → ( ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
499 498 cbvrexvw ( ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
500 oveq2 ( 𝑐 = 𝑖 → ( 𝑐 ) = ( 𝑖 ) )
501 500 fveq2d ( 𝑐 = 𝑖 → ( abs ‘ ( 𝑐 ) ) = ( abs ‘ ( 𝑖 ) ) )
502 501 eqeq2d ( 𝑐 = 𝑖 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ) )
503 502 3anbi2d ( 𝑐 = 𝑖 → ( ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
504 503 rexbidv ( 𝑐 = 𝑖 → ( ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
505 504 2rexbidv ( 𝑐 = 𝑖 → ( ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
506 505 cbvrexvw ( ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
507 neeq2 ( 𝑑 = 𝑗 → ( 𝑔𝑑𝑔𝑗 ) )
508 oveq2 ( 𝑑 = 𝑗 → ( ( ∗ ‘ 𝑦 ) − 𝑑 ) = ( ( ∗ ‘ 𝑦 ) − 𝑗 ) )
509 508 fveq2d ( 𝑑 = 𝑗 → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) )
510 509 eqeq1d ( 𝑑 = 𝑗 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
511 507 510 3anbi13d ( 𝑑 = 𝑗 → ( ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
512 511 2rexbidv ( 𝑑 = 𝑗 → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
513 512 cbvrexvw ( ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
514 513 rexbii ( ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
515 506 514 bitri ( ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
516 515 rexbii ( ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
517 499 516 bitri ( ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
518 517 rexbii ( ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
519 492 518 bitri ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶𝑛 ) ∃ ∈ ( 𝐶𝑛 ) ∃ 𝑖 ∈ ( 𝐶𝑛 ) ∃ 𝑗 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑔𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
520 483 519 sylibr ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
521 520 ex ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) → ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
522 251 387 521 3orim123d ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) → ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
523 51 522 mpd ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
524 50 523 jca ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ( ∗ ‘ 𝑦 ) ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
525 45 adantr ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → 𝑛 ∈ On )
526 1 525 46 constrsuc ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( ( ∗ ‘ 𝑦 ) ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) ) )
527 524 526 mpbird ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) )
528 527 ralrimiva ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) → ∀ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) )
529 fveq2 ( 𝑥 = 𝑦 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑦 ) )
530 529 eleq1d ( 𝑥 = 𝑦 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) )
531 530 cbvralvw ( ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ∀ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) )
532 528 531 sylibr ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) )
533 532 ex ( 𝑛 ∈ On → ( ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) → ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) )
534 simpr ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → 𝑦 ∈ ( 𝐶𝑚 ) )
535 vex 𝑚 ∈ V
536 535 a1i ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → 𝑚 ∈ V )
537 simpll ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → Lim 𝑚 )
538 1 536 537 constrlim ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → ( 𝐶𝑚 ) = 𝑧𝑚 ( 𝐶𝑧 ) )
539 534 538 eleqtrd ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → 𝑦 𝑧𝑚 ( 𝐶𝑧 ) )
540 eliun ( 𝑦 𝑧𝑚 ( 𝐶𝑧 ) ↔ ∃ 𝑧𝑚 𝑦 ∈ ( 𝐶𝑧 ) )
541 539 540 sylib ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → ∃ 𝑧𝑚 𝑦 ∈ ( 𝐶𝑧 ) )
542 529 eleq1d ( 𝑥 = 𝑦 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑧 ) ↔ ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑧 ) ) )
543 fveq2 ( 𝑛 = 𝑧 → ( 𝐶𝑛 ) = ( 𝐶𝑧 ) )
544 543 eleq2d ( 𝑛 = 𝑧 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑧 ) ) )
545 543 544 raleqbidv ( 𝑛 = 𝑧 → ( ∀ 𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝐶𝑧 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑧 ) ) )
546 simp-4r ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) ∧ 𝑧𝑚 ) ∧ 𝑦 ∈ ( 𝐶𝑧 ) ) → ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) )
547 simplr ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) ∧ 𝑧𝑚 ) ∧ 𝑦 ∈ ( 𝐶𝑧 ) ) → 𝑧𝑚 )
548 545 546 547 rspcdva ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) ∧ 𝑧𝑚 ) ∧ 𝑦 ∈ ( 𝐶𝑧 ) ) → ∀ 𝑥 ∈ ( 𝐶𝑧 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑧 ) )
549 simpr ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) ∧ 𝑧𝑚 ) ∧ 𝑦 ∈ ( 𝐶𝑧 ) ) → 𝑦 ∈ ( 𝐶𝑧 ) )
550 542 548 549 rspcdva ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) ∧ 𝑧𝑚 ) ∧ 𝑦 ∈ ( 𝐶𝑧 ) ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑧 ) )
551 550 ex ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) ∧ 𝑧𝑚 ) → ( 𝑦 ∈ ( 𝐶𝑧 ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑧 ) ) )
552 551 reximdva ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → ( ∃ 𝑧𝑚 𝑦 ∈ ( 𝐶𝑧 ) → ∃ 𝑧𝑚 ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑧 ) ) )
553 541 552 mpd ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → ∃ 𝑧𝑚 ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑧 ) )
554 eliun ( ( ∗ ‘ 𝑦 ) ∈ 𝑧𝑚 ( 𝐶𝑧 ) ↔ ∃ 𝑧𝑚 ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑧 ) )
555 553 554 sylibr ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → ( ∗ ‘ 𝑦 ) ∈ 𝑧𝑚 ( 𝐶𝑧 ) )
556 555 538 eleqtrrd ( ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶𝑚 ) ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑚 ) )
557 556 ralrimiva ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) → ∀ 𝑦 ∈ ( 𝐶𝑚 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑚 ) )
558 529 eleq1d ( 𝑥 = 𝑦 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑚 ) ) )
559 558 cbvralvw ( ∀ 𝑥 ∈ ( 𝐶𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ↔ ∀ 𝑦 ∈ ( 𝐶𝑚 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶𝑚 ) )
560 557 559 sylibr ( ( Lim 𝑚 ∧ ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) ) → ∀ 𝑥 ∈ ( 𝐶𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) )
561 560 ex ( Lim 𝑚 → ( ∀ 𝑛𝑚𝑥 ∈ ( 𝐶𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑛 ) → ∀ 𝑥 ∈ ( 𝐶𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑚 ) ) )
562 6 9 12 15 44 533 561 tfinds ( 𝑁 ∈ On → ∀ 𝑥 ∈ ( 𝐶𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑁 ) )
563 2 562 syl ( 𝜑 → ∀ 𝑥 ∈ ( 𝐶𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑁 ) )
564 fveq2 ( 𝑥 = 𝑋 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑋 ) )
565 564 eleq1d ( 𝑥 = 𝑋 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑁 ) ↔ ( ∗ ‘ 𝑋 ) ∈ ( 𝐶𝑁 ) ) )
566 565 adantl ( ( 𝜑𝑥 = 𝑋 ) → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑁 ) ↔ ( ∗ ‘ 𝑋 ) ∈ ( 𝐶𝑁 ) ) )
567 3 566 rspcdv ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐶𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶𝑁 ) → ( ∗ ‘ 𝑋 ) ∈ ( 𝐶𝑁 ) ) )
568 563 567 mpd ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ( 𝐶𝑁 ) )