Step |
Hyp |
Ref |
Expression |
1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
2 |
|
constrconj.1 |
⊢ ( 𝜑 → 𝑁 ∈ On ) |
3 |
|
constrconj.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 ‘ 𝑁 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ ∅ ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝑚 = ∅ → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) ) |
6 |
4 5
|
raleqbidv |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ ∅ ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑛 ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝑚 = 𝑛 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
9 |
7 8
|
raleqbidv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) ) |
11 |
10
|
eleq2d |
⊢ ( 𝑚 = suc 𝑛 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
12 |
10 11
|
raleqbidv |
⊢ ( 𝑚 = suc 𝑛 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑁 ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝑚 = 𝑁 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
15 |
13 14
|
raleqbidv |
⊢ ( 𝑚 = 𝑁 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
16 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → 𝑥 = 0 ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 0 ) ) |
18 |
|
cj0 |
⊢ ( ∗ ‘ 0 ) = 0 |
19 |
17 18
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) = 0 ) |
20 |
|
c0ex |
⊢ 0 ∈ V |
21 |
20
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
22 |
21
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → 0 ∈ { 0 , 1 } ) |
23 |
19 22
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) ∈ { 0 , 1 } ) |
24 |
1
|
constr0 |
⊢ ( 𝐶 ‘ ∅ ) = { 0 , 1 } |
25 |
24
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( 𝐶 ‘ ∅ ) = { 0 , 1 } ) |
26 |
23 25
|
eleqtrrd |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) |
27 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → 𝑥 = 1 ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 1 ) ) |
29 |
|
1re |
⊢ 1 ∈ ℝ |
30 |
|
cjre |
⊢ ( 1 ∈ ℝ → ( ∗ ‘ 1 ) = 1 ) |
31 |
29 30
|
ax-mp |
⊢ ( ∗ ‘ 1 ) = 1 |
32 |
28 31
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) = 1 ) |
33 |
|
1ex |
⊢ 1 ∈ V |
34 |
33
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
35 |
34
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → 1 ∈ { 0 , 1 } ) |
36 |
32 35
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) ∈ { 0 , 1 } ) |
37 |
24
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( 𝐶 ‘ ∅ ) = { 0 , 1 } ) |
38 |
36 37
|
eleqtrrd |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) |
39 |
24
|
eleq2i |
⊢ ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ↔ 𝑥 ∈ { 0 , 1 } ) |
40 |
39
|
biimpi |
⊢ ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) → 𝑥 ∈ { 0 , 1 } ) |
41 |
|
elpri |
⊢ ( 𝑥 ∈ { 0 , 1 } → ( 𝑥 = 0 ∨ 𝑥 = 1 ) ) |
42 |
40 41
|
syl |
⊢ ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) → ( 𝑥 = 0 ∨ 𝑥 = 1 ) ) |
43 |
26 38 42
|
mpjaodan |
⊢ ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) → ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) |
44 |
43
|
rgen |
⊢ ∀ 𝑥 ∈ ( 𝐶 ‘ ∅ ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) |
45 |
|
simpl |
⊢ ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → 𝑛 ∈ On ) |
46 |
|
eqid |
⊢ ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) |
47 |
1 45 46
|
constrsuc |
⊢ ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ( 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( 𝑦 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) ) |
48 |
47
|
biimpa |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( 𝑦 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) |
49 |
48
|
simpld |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → 𝑦 ∈ ℂ ) |
50 |
49
|
cjcld |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∗ ‘ 𝑦 ) ∈ ℂ ) |
51 |
48
|
simprd |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
52 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑎 ) ) |
53 |
52
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
54 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
55 |
|
simplr |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
56 |
53 54 55
|
rspcdva |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
57 |
|
id |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → 𝑔 = ( ∗ ‘ 𝑎 ) ) |
58 |
|
oveq2 |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ℎ − 𝑔 ) = ( ℎ − ( ∗ ‘ 𝑎 ) ) ) |
59 |
58
|
oveq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑡 · ( ℎ − 𝑔 ) ) = ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) |
60 |
57 59
|
oveq12d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ) |
61 |
60
|
eqeq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ) ) |
62 |
58
|
fveq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∗ ‘ ( ℎ − 𝑔 ) ) = ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) |
63 |
62
|
oveq1d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) = ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) |
64 |
63
|
fveq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ) |
65 |
64
|
neeq1d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
66 |
61 65
|
3anbi13d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
67 |
66
|
rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
68 |
67
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
69 |
68
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
70 |
69
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ∧ 𝑔 = ( ∗ ‘ 𝑎 ) ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
71 |
|
fveq2 |
⊢ ( 𝑥 = 𝑏 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑏 ) ) |
72 |
71
|
eleq1d |
⊢ ( 𝑥 = 𝑏 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
73 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
74 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
75 |
72 73 74
|
rspcdva |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
76 |
|
oveq1 |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ℎ − ( ∗ ‘ 𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) |
77 |
76
|
oveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
78 |
77
|
oveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
79 |
78
|
eqeq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) ) |
80 |
76
|
fveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) = ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
81 |
80
|
oveq1d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) |
82 |
81
|
fveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ) |
83 |
82
|
neeq1d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
84 |
79 83
|
3anbi13d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
85 |
84
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
86 |
85
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
87 |
86
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ∧ ℎ = ( ∗ ‘ 𝑏 ) ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
88 |
|
fveq2 |
⊢ ( 𝑥 = 𝑐 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑐 ) ) |
89 |
88
|
eleq1d |
⊢ ( 𝑥 = 𝑐 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
90 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
91 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
92 |
89 90 91
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
93 |
|
id |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → 𝑖 = ( ∗ ‘ 𝑐 ) ) |
94 |
|
oveq2 |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( 𝑗 − 𝑖 ) = ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) |
95 |
94
|
oveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( 𝑟 · ( 𝑗 − 𝑖 ) ) = ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) |
96 |
93 95
|
oveq12d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ) |
97 |
96
|
eqeq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ) ) |
98 |
94
|
oveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) |
99 |
98
|
fveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ) |
100 |
99
|
neeq1d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
101 |
97 100
|
3anbi23d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
102 |
101
|
rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
103 |
102
|
2rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
104 |
103
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ∧ 𝑖 = ( ∗ ‘ 𝑐 ) ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
105 |
|
fveq2 |
⊢ ( 𝑥 = 𝑑 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑑 ) ) |
106 |
105
|
eleq1d |
⊢ ( 𝑥 = 𝑑 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑑 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
107 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
108 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
109 |
106 107 108
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑑 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
110 |
|
oveq1 |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( 𝑗 − ( ∗ ‘ 𝑐 ) ) = ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) |
111 |
110
|
oveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) = ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
112 |
111
|
oveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
113 |
112
|
eqeq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) ) |
114 |
110
|
oveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
115 |
114
|
fveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
116 |
115
|
neeq1d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
117 |
113 116
|
3anbi23d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
118 |
117
|
2rexbidv |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
119 |
118
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ∧ 𝑗 = ( ∗ ‘ 𝑑 ) ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
120 |
|
simpr1 |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) |
121 |
120
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) ) |
122 |
|
id |
⊢ ( 𝑛 ∈ On → 𝑛 ∈ On ) |
123 |
1 122
|
constrsscn |
⊢ ( 𝑛 ∈ On → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
124 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
125 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
126 |
124 125
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ℂ ) |
127 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑡 ∈ ℝ ) |
128 |
127
|
recnd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑡 ∈ ℂ ) |
129 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
130 |
124 129
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ℂ ) |
131 |
130 126
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
132 |
128 131
|
mulcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑡 · ( 𝑏 − 𝑎 ) ) ∈ ℂ ) |
133 |
126 132
|
cjaddd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) ) |
134 |
128 131
|
cjmuld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) ) |
135 |
127
|
cjred |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑡 ) = 𝑡 ) |
136 |
130 126
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) |
137 |
135 136
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
138 |
134 137
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
139 |
138
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
140 |
121 133 139
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
141 |
|
simpr2 |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) |
142 |
141
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) ) |
143 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
144 |
124 143
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ℂ ) |
145 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑟 ∈ ℝ ) |
146 |
145
|
recnd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑟 ∈ ℂ ) |
147 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
148 |
124 147
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ℂ ) |
149 |
148 144
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑑 − 𝑐 ) ∈ ℂ ) |
150 |
146 149
|
mulcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑟 · ( 𝑑 − 𝑐 ) ) ∈ ℂ ) |
151 |
144 150
|
cjaddd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( ∗ ‘ ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) ) |
152 |
146 149
|
cjmuld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) = ( ( ∗ ‘ 𝑟 ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) ) |
153 |
145
|
cjred |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑟 ) = 𝑟 ) |
154 |
148 144
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑑 − 𝑐 ) ) = ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) |
155 |
153 154
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑟 ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) = ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
156 |
152 155
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) = ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
157 |
156
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑐 ) + ( ∗ ‘ ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
158 |
142 151 157
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
159 |
131
|
cjcjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑏 − 𝑎 ) ) |
160 |
159
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) = ( ( 𝑏 − 𝑎 ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) ) |
161 |
131
|
cjcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ∈ ℂ ) |
162 |
161 149
|
cjmuld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) ) |
163 |
130
|
cjcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑏 ) ∈ ℂ ) |
164 |
126
|
cjcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑎 ) ∈ ℂ ) |
165 |
163 164
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝑏 ) ) − ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) ) ) |
166 |
130
|
cjcjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ 𝑏 ) ) = 𝑏 ) |
167 |
126
|
cjcjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) = 𝑎 ) |
168 |
166 167
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ∗ ‘ 𝑏 ) ) − ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) ) = ( 𝑏 − 𝑎 ) ) |
169 |
165 168
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) = ( 𝑏 − 𝑎 ) ) |
170 |
154
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) = ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) |
171 |
169 170
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) = ( ( 𝑏 − 𝑎 ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) ) |
172 |
160 162 171
|
3eqtr4rd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) = ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
173 |
172
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) = ( ℑ ‘ ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) ) |
174 |
161 149
|
mulcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ∈ ℂ ) |
175 |
174
|
imcjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) = - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
176 |
173 175
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) = - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
177 |
|
simpr3 |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) |
178 |
174
|
imcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ∈ ℝ ) |
179 |
178
|
recnd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ∈ ℂ ) |
180 |
179
|
negne0bd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ↔ - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
181 |
177 180
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) |
182 |
176 181
|
eqnetrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) |
183 |
140 158 182
|
3jca |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
184 |
183
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
185 |
184
|
reximdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) → ( ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) → ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
186 |
185
|
reximdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) → ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
187 |
186
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
188 |
109 119 187
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
189 |
188
|
r19.29an |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
190 |
92 104 189
|
rspcedvd |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
191 |
190
|
r19.29an |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
192 |
75 87 191
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
193 |
192
|
r19.29an |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
194 |
56 70 193
|
rspcedvd |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
195 |
194
|
r19.29an |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
196 |
|
id |
⊢ ( 𝑎 = 𝑔 → 𝑎 = 𝑔 ) |
197 |
|
oveq2 |
⊢ ( 𝑎 = 𝑔 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑔 ) ) |
198 |
197
|
oveq2d |
⊢ ( 𝑎 = 𝑔 → ( 𝑡 · ( 𝑏 − 𝑎 ) ) = ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) |
199 |
196 198
|
oveq12d |
⊢ ( 𝑎 = 𝑔 → ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ) |
200 |
199
|
eqeq2d |
⊢ ( 𝑎 = 𝑔 → ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ) ) |
201 |
197
|
fveq2d |
⊢ ( 𝑎 = 𝑔 → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) = ( ∗ ‘ ( 𝑏 − 𝑔 ) ) ) |
202 |
201
|
oveq1d |
⊢ ( 𝑎 = 𝑔 → ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) = ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) |
203 |
202
|
fveq2d |
⊢ ( 𝑎 = 𝑔 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
204 |
203
|
neeq1d |
⊢ ( 𝑎 = 𝑔 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
205 |
200 204
|
3anbi13d |
⊢ ( 𝑎 = 𝑔 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
206 |
205
|
rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
207 |
206
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
208 |
207
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
209 |
208
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
210 |
|
oveq1 |
⊢ ( 𝑏 = ℎ → ( 𝑏 − 𝑔 ) = ( ℎ − 𝑔 ) ) |
211 |
210
|
oveq2d |
⊢ ( 𝑏 = ℎ → ( 𝑡 · ( 𝑏 − 𝑔 ) ) = ( 𝑡 · ( ℎ − 𝑔 ) ) ) |
212 |
211
|
oveq2d |
⊢ ( 𝑏 = ℎ → ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ) |
213 |
212
|
eqeq2d |
⊢ ( 𝑏 = ℎ → ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ) ) |
214 |
210
|
fveq2d |
⊢ ( 𝑏 = ℎ → ( ∗ ‘ ( 𝑏 − 𝑔 ) ) = ( ∗ ‘ ( ℎ − 𝑔 ) ) ) |
215 |
214
|
oveq1d |
⊢ ( 𝑏 = ℎ → ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) = ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) |
216 |
215
|
fveq2d |
⊢ ( 𝑏 = ℎ → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
217 |
216
|
neeq1d |
⊢ ( 𝑏 = ℎ → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
218 |
213 217
|
3anbi13d |
⊢ ( 𝑏 = ℎ → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
219 |
218
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
220 |
219
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
221 |
220
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
222 |
|
id |
⊢ ( 𝑐 = 𝑖 → 𝑐 = 𝑖 ) |
223 |
|
oveq2 |
⊢ ( 𝑐 = 𝑖 → ( 𝑑 − 𝑐 ) = ( 𝑑 − 𝑖 ) ) |
224 |
223
|
oveq2d |
⊢ ( 𝑐 = 𝑖 → ( 𝑟 · ( 𝑑 − 𝑐 ) ) = ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) |
225 |
222 224
|
oveq12d |
⊢ ( 𝑐 = 𝑖 → ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ) |
226 |
225
|
eqeq2d |
⊢ ( 𝑐 = 𝑖 → ( ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ) ) |
227 |
223
|
oveq2d |
⊢ ( 𝑐 = 𝑖 → ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) = ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) |
228 |
227
|
fveq2d |
⊢ ( 𝑐 = 𝑖 → ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ) |
229 |
228
|
neeq1d |
⊢ ( 𝑐 = 𝑖 → ( ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) |
230 |
226 229
|
3anbi23d |
⊢ ( 𝑐 = 𝑖 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) ) |
231 |
230
|
rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) ) |
232 |
231
|
2rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) ) |
233 |
232
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) |
234 |
|
oveq1 |
⊢ ( 𝑑 = 𝑗 → ( 𝑑 − 𝑖 ) = ( 𝑗 − 𝑖 ) ) |
235 |
234
|
oveq2d |
⊢ ( 𝑑 = 𝑗 → ( 𝑟 · ( 𝑑 − 𝑖 ) ) = ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) |
236 |
235
|
oveq2d |
⊢ ( 𝑑 = 𝑗 → ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ) |
237 |
236
|
eqeq2d |
⊢ ( 𝑑 = 𝑗 → ( ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ) ) |
238 |
234
|
oveq2d |
⊢ ( 𝑑 = 𝑗 → ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) = ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) |
239 |
238
|
fveq2d |
⊢ ( 𝑑 = 𝑗 → ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ) |
240 |
239
|
neeq1d |
⊢ ( 𝑑 = 𝑗 → ( ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
241 |
237 240
|
3anbi23d |
⊢ ( 𝑑 = 𝑗 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
242 |
241
|
2rexbidv |
⊢ ( 𝑑 = 𝑗 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
243 |
242
|
cbvrexvw |
⊢ ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
244 |
243
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
245 |
233 244
|
bitri |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
246 |
245
|
rexbii |
⊢ ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
247 |
221 246
|
bitri |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
248 |
247
|
rexbii |
⊢ ( ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
249 |
209 248
|
bitri |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
250 |
195 249
|
sylibr |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
251 |
250
|
ex |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
252 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
253 |
|
simplr |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
254 |
53 252 253
|
rspcdva |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
255 |
61
|
anbi1d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
256 |
255
|
rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
257 |
256
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
258 |
257
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
259 |
258
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑔 = ( ∗ ‘ 𝑎 ) ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
260 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
261 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
262 |
72 260 261
|
rspcdva |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
263 |
79
|
anbi1d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
264 |
263
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
265 |
264
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
266 |
265
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ ℎ = ( ∗ ‘ 𝑏 ) ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
267 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
268 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
269 |
89 267 268
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
270 |
|
oveq2 |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ 𝑦 ) − 𝑖 ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) |
271 |
270
|
fveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
272 |
271
|
eqeq1d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
273 |
272
|
anbi2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
274 |
273
|
rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
275 |
274
|
2rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
276 |
275
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑖 = ( ∗ ‘ 𝑐 ) ) → ( ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
277 |
|
fveq2 |
⊢ ( 𝑥 = 𝑒 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑒 ) ) |
278 |
277
|
eleq1d |
⊢ ( 𝑥 = 𝑒 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑒 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
279 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
280 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) |
281 |
278 279 280
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑒 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
282 |
|
oveq1 |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( 𝑘 − 𝑙 ) = ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) |
283 |
282
|
fveq2d |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( abs ‘ ( 𝑘 − 𝑙 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) |
284 |
283
|
eqeq2d |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) |
285 |
284
|
anbi2d |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) ) |
286 |
285
|
2rexbidv |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) ) |
287 |
286
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑘 = ( ∗ ‘ 𝑒 ) ) → ( ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) ) |
288 |
|
fveq2 |
⊢ ( 𝑥 = 𝑓 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑓 ) ) |
289 |
288
|
eleq1d |
⊢ ( 𝑥 = 𝑓 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑓 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
290 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
291 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) |
292 |
289 290 291
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑓 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
293 |
|
oveq2 |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ( ∗ ‘ 𝑒 ) − 𝑙 ) = ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) |
294 |
293
|
fveq2d |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) |
295 |
294
|
eqeq2d |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) |
296 |
295
|
anbi2d |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
297 |
296
|
rexbidv |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
298 |
297
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑙 = ( ∗ ‘ 𝑓 ) ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
299 |
|
simprl |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) |
300 |
299
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) ) |
301 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
302 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
303 |
301 302
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ℂ ) |
304 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑡 ∈ ℝ ) |
305 |
304
|
recnd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑡 ∈ ℂ ) |
306 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
307 |
301 306
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ℂ ) |
308 |
307 303
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
309 |
305 308
|
mulcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑡 · ( 𝑏 − 𝑎 ) ) ∈ ℂ ) |
310 |
303 309
|
cjaddd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) ) |
311 |
305 308
|
cjmuld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) ) |
312 |
304
|
cjred |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑡 ) = 𝑡 ) |
313 |
307 303
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) |
314 |
312 313
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
315 |
311 314
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
316 |
315
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
317 |
300 310 316
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
318 |
|
simprr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
319 |
49
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑦 ∈ ℂ ) |
320 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
321 |
301 320
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ℂ ) |
322 |
319 321
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑦 − 𝑐 ) ∈ ℂ ) |
323 |
322
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑐 ) ) ) = ( abs ‘ ( 𝑦 − 𝑐 ) ) ) |
324 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) |
325 |
301 324
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑒 ∈ ℂ ) |
326 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) |
327 |
301 326
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑓 ∈ ℂ ) |
328 |
325 327
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑒 − 𝑓 ) ∈ ℂ ) |
329 |
328
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
330 |
318 323 329
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑐 ) ) ) = ( abs ‘ ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) ) |
331 |
319 321
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑦 − 𝑐 ) ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) |
332 |
331
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
333 |
325 327
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑒 − 𝑓 ) ) = ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) |
334 |
333
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) |
335 |
330 332 334
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) |
336 |
317 335
|
jca |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) |
337 |
336
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
338 |
337
|
reximdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
339 |
338
|
imp |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) |
340 |
292 298 339
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) |
341 |
340
|
r19.29an |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) |
342 |
281 287 341
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
343 |
342
|
r19.29an |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
344 |
269 276 343
|
rspcedvd |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
345 |
344
|
r19.29an |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
346 |
262 266 345
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
347 |
346
|
r19.29an |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
348 |
254 259 347
|
rspcedvd |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
349 |
348
|
r19.29an |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
350 |
200
|
anbi1d |
⊢ ( 𝑎 = 𝑔 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
351 |
350
|
rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
352 |
351
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
353 |
352
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
354 |
353
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
355 |
213
|
anbi1d |
⊢ ( 𝑏 = ℎ → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
356 |
355
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
357 |
356
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
358 |
357
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
359 |
|
oveq2 |
⊢ ( 𝑐 = 𝑖 → ( ( ∗ ‘ 𝑦 ) − 𝑐 ) = ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) |
360 |
359
|
fveq2d |
⊢ ( 𝑐 = 𝑖 → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) ) |
361 |
360
|
eqeq1d |
⊢ ( 𝑐 = 𝑖 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
362 |
361
|
anbi2d |
⊢ ( 𝑐 = 𝑖 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
363 |
362
|
rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
364 |
363
|
2rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
365 |
364
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
366 |
|
oveq1 |
⊢ ( 𝑒 = 𝑘 → ( 𝑒 − 𝑓 ) = ( 𝑘 − 𝑓 ) ) |
367 |
366
|
fveq2d |
⊢ ( 𝑒 = 𝑘 → ( abs ‘ ( 𝑒 − 𝑓 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) |
368 |
367
|
eqeq2d |
⊢ ( 𝑒 = 𝑘 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ) |
369 |
368
|
anbi2d |
⊢ ( 𝑒 = 𝑘 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ) ) |
370 |
369
|
2rexbidv |
⊢ ( 𝑒 = 𝑘 → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ) ) |
371 |
370
|
cbvrexvw |
⊢ ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ) |
372 |
|
oveq2 |
⊢ ( 𝑓 = 𝑙 → ( 𝑘 − 𝑓 ) = ( 𝑘 − 𝑙 ) ) |
373 |
372
|
fveq2d |
⊢ ( 𝑓 = 𝑙 → ( abs ‘ ( 𝑘 − 𝑓 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) |
374 |
373
|
eqeq2d |
⊢ ( 𝑓 = 𝑙 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
375 |
374
|
anbi2d |
⊢ ( 𝑓 = 𝑙 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
376 |
375
|
rexbidv |
⊢ ( 𝑓 = 𝑙 → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
377 |
376
|
cbvrexvw |
⊢ ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
378 |
377
|
rexbii |
⊢ ( ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
379 |
371 378
|
bitri |
⊢ ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
380 |
379
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
381 |
365 380
|
bitri |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
382 |
381
|
rexbii |
⊢ ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
383 |
358 382
|
bitri |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
384 |
383
|
rexbii |
⊢ ( ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
385 |
354 384
|
bitri |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
386 |
349 385
|
sylibr |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
387 |
386
|
ex |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
388 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
389 |
|
simplr |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
390 |
53 388 389
|
rspcdva |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
391 |
|
neeq1 |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑔 ≠ 𝑗 ↔ ( ∗ ‘ 𝑎 ) ≠ 𝑗 ) ) |
392 |
|
oveq2 |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ∗ ‘ 𝑦 ) − 𝑔 ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) |
393 |
392
|
fveq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
394 |
393
|
eqeq1d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ) ) |
395 |
391 394
|
3anbi12d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
396 |
395
|
rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
397 |
396
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
398 |
397
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
399 |
398
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑔 = ( ∗ ‘ 𝑎 ) ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
400 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
401 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
402 |
72 400 401
|
rspcdva |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
403 |
|
oveq1 |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ℎ − 𝑖 ) = ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) |
404 |
403
|
fveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( abs ‘ ( ℎ − 𝑖 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ) |
405 |
404
|
eqeq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ) ) |
406 |
405
|
3anbi2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
407 |
406
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
408 |
407
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
409 |
408
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ ℎ = ( ∗ ‘ 𝑏 ) ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
410 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
411 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
412 |
89 410 411
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
413 |
|
oveq2 |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ 𝑏 ) − 𝑖 ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) |
414 |
413
|
fveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
415 |
414
|
eqeq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
416 |
415
|
3anbi2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
417 |
416
|
rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
418 |
417
|
2rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
419 |
418
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑖 = ( ∗ ‘ 𝑐 ) ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
420 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
421 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
422 |
106 420 421
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑑 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
423 |
|
neeq2 |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ↔ ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) ) |
424 |
|
oveq2 |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑦 ) − 𝑗 ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) |
425 |
424
|
fveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) ) |
426 |
425
|
eqeq1d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
427 |
423 426
|
3anbi13d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
428 |
427
|
2rexbidv |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
429 |
428
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑗 = ( ∗ ‘ 𝑑 ) ) → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
430 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
431 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
432 |
430 431
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑎 ∈ ℂ ) |
433 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
434 |
430 433
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑑 ∈ ℂ ) |
435 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑎 ≠ 𝑑 ) |
436 |
|
cj11 |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑑 ∈ ℂ ) → ( ( ∗ ‘ 𝑎 ) = ( ∗ ‘ 𝑑 ) ↔ 𝑎 = 𝑑 ) ) |
437 |
436
|
necon3bid |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑑 ∈ ℂ ) → ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ↔ 𝑎 ≠ 𝑑 ) ) |
438 |
437
|
biimpar |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑑 ∈ ℂ ) ∧ 𝑎 ≠ 𝑑 ) → ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) |
439 |
432 434 435 438
|
syl21anc |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) |
440 |
439
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( 𝑎 ≠ 𝑑 → ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) ) |
441 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) |
442 |
49
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑦 ∈ ℂ ) |
443 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
444 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
445 |
443 444
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑎 ∈ ℂ ) |
446 |
442 445
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( 𝑦 − 𝑎 ) ∈ ℂ ) |
447 |
446
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑎 ) ) ) = ( abs ‘ ( 𝑦 − 𝑎 ) ) ) |
448 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
449 |
443 448
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑏 ∈ ℂ ) |
450 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
451 |
443 450
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑐 ∈ ℂ ) |
452 |
449 451
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( 𝑏 − 𝑐 ) ∈ ℂ ) |
453 |
452
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) |
454 |
441 447 453
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑎 ) ) ) = ( abs ‘ ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) ) |
455 |
442 445
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( ∗ ‘ ( 𝑦 − 𝑎 ) ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) |
456 |
455
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
457 |
449 451
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( ∗ ‘ ( 𝑏 − 𝑐 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) |
458 |
457
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
459 |
454 456 458
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
460 |
459
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
461 |
49
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → 𝑦 ∈ ℂ ) |
462 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
463 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
464 |
462 463
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → 𝑑 ∈ ℂ ) |
465 |
461 464
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( 𝑦 − 𝑑 ) ∈ ℂ ) |
466 |
465
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑑 ) ) ) = ( abs ‘ ( 𝑦 − 𝑑 ) ) ) |
467 |
461 464
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( ∗ ‘ ( 𝑦 − 𝑑 ) ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) |
468 |
467
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑑 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) ) |
469 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
470 |
466 468 469
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
471 |
470
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
472 |
440 460 471
|
3anim123d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
473 |
472
|
reximdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
474 |
473
|
reximdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
475 |
474
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
476 |
422 429 475
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
477 |
476
|
r19.29an |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
478 |
412 419 477
|
rspcedvd |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
479 |
478
|
r19.29an |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
480 |
402 409 479
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
481 |
480
|
r19.29an |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
482 |
390 399 481
|
rspcedvd |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
483 |
482
|
r19.29an |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
484 |
|
neeq1 |
⊢ ( 𝑎 = 𝑔 → ( 𝑎 ≠ 𝑑 ↔ 𝑔 ≠ 𝑑 ) ) |
485 |
|
oveq2 |
⊢ ( 𝑎 = 𝑔 → ( ( ∗ ‘ 𝑦 ) − 𝑎 ) = ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) |
486 |
485
|
fveq2d |
⊢ ( 𝑎 = 𝑔 → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) ) |
487 |
486
|
eqeq1d |
⊢ ( 𝑎 = 𝑔 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) ) |
488 |
484 487
|
3anbi12d |
⊢ ( 𝑎 = 𝑔 → ( ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
489 |
488
|
rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
490 |
489
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
491 |
490
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
492 |
491
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
493 |
|
oveq1 |
⊢ ( 𝑏 = ℎ → ( 𝑏 − 𝑐 ) = ( ℎ − 𝑐 ) ) |
494 |
493
|
fveq2d |
⊢ ( 𝑏 = ℎ → ( abs ‘ ( 𝑏 − 𝑐 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ) |
495 |
494
|
eqeq2d |
⊢ ( 𝑏 = ℎ → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ) ) |
496 |
495
|
3anbi2d |
⊢ ( 𝑏 = ℎ → ( ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
497 |
496
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
498 |
497
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
499 |
498
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
500 |
|
oveq2 |
⊢ ( 𝑐 = 𝑖 → ( ℎ − 𝑐 ) = ( ℎ − 𝑖 ) ) |
501 |
500
|
fveq2d |
⊢ ( 𝑐 = 𝑖 → ( abs ‘ ( ℎ − 𝑐 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ) |
502 |
501
|
eqeq2d |
⊢ ( 𝑐 = 𝑖 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ) ) |
503 |
502
|
3anbi2d |
⊢ ( 𝑐 = 𝑖 → ( ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
504 |
503
|
rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
505 |
504
|
2rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
506 |
505
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
507 |
|
neeq2 |
⊢ ( 𝑑 = 𝑗 → ( 𝑔 ≠ 𝑑 ↔ 𝑔 ≠ 𝑗 ) ) |
508 |
|
oveq2 |
⊢ ( 𝑑 = 𝑗 → ( ( ∗ ‘ 𝑦 ) − 𝑑 ) = ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) |
509 |
508
|
fveq2d |
⊢ ( 𝑑 = 𝑗 → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) ) |
510 |
509
|
eqeq1d |
⊢ ( 𝑑 = 𝑗 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
511 |
507 510
|
3anbi13d |
⊢ ( 𝑑 = 𝑗 → ( ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
512 |
511
|
2rexbidv |
⊢ ( 𝑑 = 𝑗 → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
513 |
512
|
cbvrexvw |
⊢ ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
514 |
513
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
515 |
506 514
|
bitri |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
516 |
515
|
rexbii |
⊢ ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
517 |
499 516
|
bitri |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
518 |
517
|
rexbii |
⊢ ( ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
519 |
492 518
|
bitri |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
520 |
483 519
|
sylibr |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
521 |
520
|
ex |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
522 |
251 387 521
|
3orim123d |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) |
523 |
51 522
|
mpd |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
524 |
50 523
|
jca |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ( ∗ ‘ 𝑦 ) ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) |
525 |
45
|
adantr |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → 𝑛 ∈ On ) |
526 |
1 525 46
|
constrsuc |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( ( ∗ ‘ 𝑦 ) ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) ) |
527 |
524 526
|
mpbird |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) |
528 |
527
|
ralrimiva |
⊢ ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ∀ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) |
529 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑦 ) ) |
530 |
529
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
531 |
530
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ∀ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) |
532 |
528 531
|
sylibr |
⊢ ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) |
533 |
532
|
ex |
⊢ ( 𝑛 ∈ On → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) → ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
534 |
|
simpr |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) |
535 |
|
vex |
⊢ 𝑚 ∈ V |
536 |
535
|
a1i |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → 𝑚 ∈ V ) |
537 |
|
simpll |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → Lim 𝑚 ) |
538 |
1 536 537
|
constrlim |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ( 𝐶 ‘ 𝑚 ) = ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ) |
539 |
534 538
|
eleqtrd |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → 𝑦 ∈ ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ) |
540 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑚 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) |
541 |
539 540
|
sylib |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ∃ 𝑧 ∈ 𝑚 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) |
542 |
529
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑧 ) ↔ ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
543 |
|
fveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑧 ) ) |
544 |
543
|
eleq2d |
⊢ ( 𝑛 = 𝑧 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
545 |
543 544
|
raleqbidv |
⊢ ( 𝑛 = 𝑧 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑧 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
546 |
|
simp-4r |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
547 |
|
simplr |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → 𝑧 ∈ 𝑚 ) |
548 |
545 546 547
|
rspcdva |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑧 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑧 ) ) |
549 |
|
simpr |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) |
550 |
542 548 549
|
rspcdva |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) |
551 |
550
|
ex |
⊢ ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) → ( 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
552 |
551
|
reximdva |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ( ∃ 𝑧 ∈ 𝑚 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) → ∃ 𝑧 ∈ 𝑚 ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
553 |
541 552
|
mpd |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ∃ 𝑧 ∈ 𝑚 ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) |
554 |
|
eliun |
⊢ ( ( ∗ ‘ 𝑦 ) ∈ ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑚 ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) |
555 |
553 554
|
sylibr |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ( ∗ ‘ 𝑦 ) ∈ ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ) |
556 |
555 538
|
eleqtrrd |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑚 ) ) |
557 |
556
|
ralrimiva |
⊢ ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ∀ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑚 ) ) |
558 |
529
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑚 ) ) ) |
559 |
558
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑚 ) ) |
560 |
557 559
|
sylibr |
⊢ ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ) |
561 |
560
|
ex |
⊢ ( Lim 𝑚 → ( ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ) ) |
562 |
6 9 12 15 44 533 561
|
tfinds |
⊢ ( 𝑁 ∈ On → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
563 |
2 562
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
564 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑋 ) ) |
565 |
564
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ↔ ( ∗ ‘ 𝑋 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
566 |
565
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ↔ ( ∗ ‘ 𝑋 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
567 |
3 566
|
rspcdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) → ( ∗ ‘ 𝑋 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
568 |
563 567
|
mpd |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |