| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrconj.1 |
⊢ ( 𝜑 → 𝑁 ∈ On ) |
| 3 |
|
constrconj.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ ∅ ) ) |
| 5 |
4
|
eleq2d |
⊢ ( 𝑚 = ∅ → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) ) |
| 6 |
4 5
|
raleqbidv |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ ∅ ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑛 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝑚 = 𝑛 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
| 9 |
7 8
|
raleqbidv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) ) |
| 11 |
10
|
eleq2d |
⊢ ( 𝑚 = suc 𝑛 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
| 12 |
10 11
|
raleqbidv |
⊢ ( 𝑚 = suc 𝑛 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑁 ) ) |
| 14 |
13
|
eleq2d |
⊢ ( 𝑚 = 𝑁 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
| 15 |
13 14
|
raleqbidv |
⊢ ( 𝑚 = 𝑁 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
| 16 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → 𝑥 = 0 ) |
| 17 |
16
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 0 ) ) |
| 18 |
|
cj0 |
⊢ ( ∗ ‘ 0 ) = 0 |
| 19 |
17 18
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) = 0 ) |
| 20 |
|
c0ex |
⊢ 0 ∈ V |
| 21 |
20
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
| 22 |
21
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → 0 ∈ { 0 , 1 } ) |
| 23 |
19 22
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) ∈ { 0 , 1 } ) |
| 24 |
1
|
constr0 |
⊢ ( 𝐶 ‘ ∅ ) = { 0 , 1 } |
| 25 |
24
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( 𝐶 ‘ ∅ ) = { 0 , 1 } ) |
| 26 |
23 25
|
eleqtrrd |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 0 ) → ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) |
| 27 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → 𝑥 = 1 ) |
| 28 |
27
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 1 ) ) |
| 29 |
|
1re |
⊢ 1 ∈ ℝ |
| 30 |
|
cjre |
⊢ ( 1 ∈ ℝ → ( ∗ ‘ 1 ) = 1 ) |
| 31 |
29 30
|
ax-mp |
⊢ ( ∗ ‘ 1 ) = 1 |
| 32 |
28 31
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) = 1 ) |
| 33 |
|
1ex |
⊢ 1 ∈ V |
| 34 |
33
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
| 35 |
34
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → 1 ∈ { 0 , 1 } ) |
| 36 |
32 35
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) ∈ { 0 , 1 } ) |
| 37 |
24
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( 𝐶 ‘ ∅ ) = { 0 , 1 } ) |
| 38 |
36 37
|
eleqtrrd |
⊢ ( ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ∧ 𝑥 = 1 ) → ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) |
| 39 |
24
|
eleq2i |
⊢ ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) ↔ 𝑥 ∈ { 0 , 1 } ) |
| 40 |
39
|
biimpi |
⊢ ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) → 𝑥 ∈ { 0 , 1 } ) |
| 41 |
|
elpri |
⊢ ( 𝑥 ∈ { 0 , 1 } → ( 𝑥 = 0 ∨ 𝑥 = 1 ) ) |
| 42 |
40 41
|
syl |
⊢ ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) → ( 𝑥 = 0 ∨ 𝑥 = 1 ) ) |
| 43 |
26 38 42
|
mpjaodan |
⊢ ( 𝑥 ∈ ( 𝐶 ‘ ∅ ) → ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) ) |
| 44 |
43
|
rgen |
⊢ ∀ 𝑥 ∈ ( 𝐶 ‘ ∅ ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ ∅ ) |
| 45 |
|
simpl |
⊢ ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → 𝑛 ∈ On ) |
| 46 |
|
eqid |
⊢ ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) |
| 47 |
1 45 46
|
constrsuc |
⊢ ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ( 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( 𝑦 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) ) |
| 48 |
47
|
biimpa |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( 𝑦 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) |
| 49 |
48
|
simpld |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → 𝑦 ∈ ℂ ) |
| 50 |
49
|
cjcld |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∗ ‘ 𝑦 ) ∈ ℂ ) |
| 51 |
48
|
simprd |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑎 ) ) |
| 53 |
52
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
| 54 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 55 |
|
simplr |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 56 |
53 54 55
|
rspcdva |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 57 |
|
id |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → 𝑔 = ( ∗ ‘ 𝑎 ) ) |
| 58 |
|
oveq2 |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ℎ − 𝑔 ) = ( ℎ − ( ∗ ‘ 𝑎 ) ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑡 · ( ℎ − 𝑔 ) ) = ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) |
| 60 |
57 59
|
oveq12d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ) |
| 61 |
60
|
eqeq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ) ) |
| 62 |
58
|
fveq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∗ ‘ ( ℎ − 𝑔 ) ) = ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) |
| 63 |
62
|
oveq1d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) = ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ) |
| 65 |
64
|
neeq1d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 66 |
61 65
|
3anbi13d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 67 |
66
|
rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 68 |
67
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 69 |
68
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 70 |
69
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ∧ 𝑔 = ( ∗ ‘ 𝑎 ) ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 71 |
|
fveq2 |
⊢ ( 𝑥 = 𝑏 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑏 ) ) |
| 72 |
71
|
eleq1d |
⊢ ( 𝑥 = 𝑏 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
| 73 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 74 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 75 |
72 73 74
|
rspcdva |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 76 |
|
oveq1 |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ℎ − ( ∗ ‘ 𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) |
| 77 |
76
|
oveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
| 78 |
77
|
oveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
| 79 |
78
|
eqeq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) ) |
| 80 |
76
|
fveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) = ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
| 81 |
80
|
oveq1d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) |
| 82 |
81
|
fveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ) |
| 83 |
82
|
neeq1d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 84 |
79 83
|
3anbi13d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 85 |
84
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 86 |
85
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 87 |
86
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ∧ ℎ = ( ∗ ‘ 𝑏 ) ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 88 |
|
fveq2 |
⊢ ( 𝑥 = 𝑐 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑐 ) ) |
| 89 |
88
|
eleq1d |
⊢ ( 𝑥 = 𝑐 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
| 90 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 91 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 92 |
89 90 91
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 93 |
|
id |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → 𝑖 = ( ∗ ‘ 𝑐 ) ) |
| 94 |
|
oveq2 |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( 𝑗 − 𝑖 ) = ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) |
| 95 |
94
|
oveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( 𝑟 · ( 𝑗 − 𝑖 ) ) = ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) |
| 96 |
93 95
|
oveq12d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ) |
| 97 |
96
|
eqeq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ) ) |
| 98 |
94
|
oveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) |
| 99 |
98
|
fveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ) |
| 100 |
99
|
neeq1d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
| 101 |
97 100
|
3anbi23d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 102 |
101
|
rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 103 |
102
|
2rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 104 |
103
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ∧ 𝑖 = ( ∗ ‘ 𝑐 ) ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 105 |
|
fveq2 |
⊢ ( 𝑥 = 𝑑 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑑 ) ) |
| 106 |
105
|
eleq1d |
⊢ ( 𝑥 = 𝑑 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑑 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
| 107 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 108 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 109 |
106 107 108
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑑 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 110 |
|
oveq1 |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( 𝑗 − ( ∗ ‘ 𝑐 ) ) = ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) |
| 111 |
110
|
oveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) = ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 112 |
111
|
oveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
| 113 |
112
|
eqeq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) ) |
| 114 |
110
|
oveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 115 |
114
|
fveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
| 116 |
115
|
neeq1d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
| 117 |
113 116
|
3anbi23d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 118 |
117
|
2rexbidv |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 119 |
118
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ∧ 𝑗 = ( ∗ ‘ 𝑑 ) ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 120 |
|
simpr1 |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) |
| 121 |
120
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) ) |
| 122 |
|
id |
⊢ ( 𝑛 ∈ On → 𝑛 ∈ On ) |
| 123 |
1 122
|
constrsscn |
⊢ ( 𝑛 ∈ On → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
| 124 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
| 125 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 126 |
124 125
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ℂ ) |
| 127 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑡 ∈ ℝ ) |
| 128 |
127
|
recnd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑡 ∈ ℂ ) |
| 129 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 130 |
124 129
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ℂ ) |
| 131 |
130 126
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
| 132 |
128 131
|
mulcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑡 · ( 𝑏 − 𝑎 ) ) ∈ ℂ ) |
| 133 |
126 132
|
cjaddd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) ) |
| 134 |
128 131
|
cjmuld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 135 |
127
|
cjred |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑡 ) = 𝑡 ) |
| 136 |
130 126
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) |
| 137 |
135 136
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
| 138 |
134 137
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
| 139 |
138
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
| 140 |
121 133 139
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
| 141 |
|
simpr2 |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) |
| 142 |
141
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) ) |
| 143 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 144 |
124 143
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ℂ ) |
| 145 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑟 ∈ ℝ ) |
| 146 |
145
|
recnd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑟 ∈ ℂ ) |
| 147 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 148 |
124 147
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ℂ ) |
| 149 |
148 144
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑑 − 𝑐 ) ∈ ℂ ) |
| 150 |
146 149
|
mulcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑟 · ( 𝑑 − 𝑐 ) ) ∈ ℂ ) |
| 151 |
144 150
|
cjaddd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( ∗ ‘ ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) ) |
| 152 |
146 149
|
cjmuld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) = ( ( ∗ ‘ 𝑟 ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) ) |
| 153 |
145
|
cjred |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑟 ) = 𝑟 ) |
| 154 |
148 144
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑑 − 𝑐 ) ) = ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) |
| 155 |
153 154
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑟 ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) = ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 156 |
152 155
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) = ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 157 |
156
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑐 ) + ( ∗ ‘ ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
| 158 |
142 151 157
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
| 159 |
131
|
cjcjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑏 − 𝑎 ) ) |
| 160 |
159
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) = ( ( 𝑏 − 𝑎 ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) ) |
| 161 |
131
|
cjcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ∈ ℂ ) |
| 162 |
161 149
|
cjmuld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) ) |
| 163 |
130
|
cjcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑏 ) ∈ ℂ ) |
| 164 |
126
|
cjcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑎 ) ∈ ℂ ) |
| 165 |
163 164
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝑏 ) ) − ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) ) ) |
| 166 |
130
|
cjcjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ 𝑏 ) ) = 𝑏 ) |
| 167 |
126
|
cjcjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) = 𝑎 ) |
| 168 |
166 167
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ∗ ‘ 𝑏 ) ) − ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) ) = ( 𝑏 − 𝑎 ) ) |
| 169 |
165 168
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) = ( 𝑏 − 𝑎 ) ) |
| 170 |
154
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) = ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) |
| 171 |
169 170
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) = ( ( 𝑏 − 𝑎 ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) ) |
| 172 |
160 162 171
|
3eqtr4rd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) = ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
| 173 |
172
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) = ( ℑ ‘ ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) ) |
| 174 |
161 149
|
mulcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ∈ ℂ ) |
| 175 |
174
|
imcjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) = - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
| 176 |
173 175
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) = - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
| 177 |
|
simpr3 |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) |
| 178 |
174
|
imcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ∈ ℝ ) |
| 179 |
178
|
recnd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ∈ ℂ ) |
| 180 |
179
|
negne0bd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ↔ - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
| 181 |
177 180
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → - ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) |
| 182 |
176 181
|
eqnetrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) |
| 183 |
140 158 182
|
3jca |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
| 184 |
183
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 185 |
184
|
reximdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) → ( ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) → ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 186 |
185
|
reximdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) → ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) ) |
| 187 |
186
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
| 188 |
109 119 187
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
| 189 |
188
|
r19.29an |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑐 ) + ( 𝑟 · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) ) |
| 190 |
92 104 189
|
rspcedvd |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 191 |
190
|
r19.29an |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 192 |
75 87 191
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 193 |
192
|
r19.29an |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − ( ∗ ‘ 𝑎 ) ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 194 |
56 70 193
|
rspcedvd |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 195 |
194
|
r19.29an |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 196 |
|
id |
⊢ ( 𝑎 = 𝑔 → 𝑎 = 𝑔 ) |
| 197 |
|
oveq2 |
⊢ ( 𝑎 = 𝑔 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑔 ) ) |
| 198 |
197
|
oveq2d |
⊢ ( 𝑎 = 𝑔 → ( 𝑡 · ( 𝑏 − 𝑎 ) ) = ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) |
| 199 |
196 198
|
oveq12d |
⊢ ( 𝑎 = 𝑔 → ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ) |
| 200 |
199
|
eqeq2d |
⊢ ( 𝑎 = 𝑔 → ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ) ) |
| 201 |
197
|
fveq2d |
⊢ ( 𝑎 = 𝑔 → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) = ( ∗ ‘ ( 𝑏 − 𝑔 ) ) ) |
| 202 |
201
|
oveq1d |
⊢ ( 𝑎 = 𝑔 → ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) = ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) |
| 203 |
202
|
fveq2d |
⊢ ( 𝑎 = 𝑔 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
| 204 |
203
|
neeq1d |
⊢ ( 𝑎 = 𝑔 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
| 205 |
200 204
|
3anbi13d |
⊢ ( 𝑎 = 𝑔 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
| 206 |
205
|
rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
| 207 |
206
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
| 208 |
207
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
| 209 |
208
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
| 210 |
|
oveq1 |
⊢ ( 𝑏 = ℎ → ( 𝑏 − 𝑔 ) = ( ℎ − 𝑔 ) ) |
| 211 |
210
|
oveq2d |
⊢ ( 𝑏 = ℎ → ( 𝑡 · ( 𝑏 − 𝑔 ) ) = ( 𝑡 · ( ℎ − 𝑔 ) ) ) |
| 212 |
211
|
oveq2d |
⊢ ( 𝑏 = ℎ → ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ) |
| 213 |
212
|
eqeq2d |
⊢ ( 𝑏 = ℎ → ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ) ) |
| 214 |
210
|
fveq2d |
⊢ ( 𝑏 = ℎ → ( ∗ ‘ ( 𝑏 − 𝑔 ) ) = ( ∗ ‘ ( ℎ − 𝑔 ) ) ) |
| 215 |
214
|
oveq1d |
⊢ ( 𝑏 = ℎ → ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) = ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) |
| 216 |
215
|
fveq2d |
⊢ ( 𝑏 = ℎ → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ) |
| 217 |
216
|
neeq1d |
⊢ ( 𝑏 = ℎ → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
| 218 |
213 217
|
3anbi13d |
⊢ ( 𝑏 = ℎ → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
| 219 |
218
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
| 220 |
219
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
| 221 |
220
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
| 222 |
|
id |
⊢ ( 𝑐 = 𝑖 → 𝑐 = 𝑖 ) |
| 223 |
|
oveq2 |
⊢ ( 𝑐 = 𝑖 → ( 𝑑 − 𝑐 ) = ( 𝑑 − 𝑖 ) ) |
| 224 |
223
|
oveq2d |
⊢ ( 𝑐 = 𝑖 → ( 𝑟 · ( 𝑑 − 𝑐 ) ) = ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) |
| 225 |
222 224
|
oveq12d |
⊢ ( 𝑐 = 𝑖 → ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ) |
| 226 |
225
|
eqeq2d |
⊢ ( 𝑐 = 𝑖 → ( ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ) ) |
| 227 |
223
|
oveq2d |
⊢ ( 𝑐 = 𝑖 → ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) = ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) |
| 228 |
227
|
fveq2d |
⊢ ( 𝑐 = 𝑖 → ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ) |
| 229 |
228
|
neeq1d |
⊢ ( 𝑐 = 𝑖 → ( ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) |
| 230 |
226 229
|
3anbi23d |
⊢ ( 𝑐 = 𝑖 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 231 |
230
|
rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 232 |
231
|
2rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 233 |
232
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ) |
| 234 |
|
oveq1 |
⊢ ( 𝑑 = 𝑗 → ( 𝑑 − 𝑖 ) = ( 𝑗 − 𝑖 ) ) |
| 235 |
234
|
oveq2d |
⊢ ( 𝑑 = 𝑗 → ( 𝑟 · ( 𝑑 − 𝑖 ) ) = ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) |
| 236 |
235
|
oveq2d |
⊢ ( 𝑑 = 𝑗 → ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ) |
| 237 |
236
|
eqeq2d |
⊢ ( 𝑑 = 𝑗 → ( ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ↔ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ) ) |
| 238 |
234
|
oveq2d |
⊢ ( 𝑑 = 𝑗 → ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) = ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) |
| 239 |
238
|
fveq2d |
⊢ ( 𝑑 = 𝑗 → ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ) |
| 240 |
239
|
neeq1d |
⊢ ( 𝑑 = 𝑗 → ( ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 241 |
237 240
|
3anbi23d |
⊢ ( 𝑑 = 𝑗 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 242 |
241
|
2rexbidv |
⊢ ( 𝑑 = 𝑗 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) ) |
| 243 |
242
|
cbvrexvw |
⊢ ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 244 |
243
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑑 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑖 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 245 |
233 244
|
bitri |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 246 |
245
|
rexbii |
⊢ ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 247 |
221 246
|
bitri |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 248 |
247
|
rexbii |
⊢ ( ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑔 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 249 |
209 248
|
bitri |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑖 + ( 𝑟 · ( 𝑗 − 𝑖 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( ℎ − 𝑔 ) ) · ( 𝑗 − 𝑖 ) ) ) ≠ 0 ) ) |
| 250 |
195 249
|
sylibr |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) |
| 251 |
250
|
ex |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) ) |
| 252 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 253 |
|
simplr |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 254 |
53 252 253
|
rspcdva |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 255 |
61
|
anbi1d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 256 |
255
|
rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 257 |
256
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 258 |
257
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 259 |
258
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑔 = ( ∗ ‘ 𝑎 ) ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 260 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 261 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 262 |
72 260 261
|
rspcdva |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 263 |
79
|
anbi1d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 264 |
263
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 265 |
264
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 266 |
265
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ ℎ = ( ∗ ‘ 𝑏 ) ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 267 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 268 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 269 |
89 267 268
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 270 |
|
oveq2 |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ 𝑦 ) − 𝑖 ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) |
| 271 |
270
|
fveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 272 |
271
|
eqeq1d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 273 |
272
|
anbi2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 274 |
273
|
rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 275 |
274
|
2rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 276 |
275
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑖 = ( ∗ ‘ 𝑐 ) ) → ( ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 277 |
|
fveq2 |
⊢ ( 𝑥 = 𝑒 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑒 ) ) |
| 278 |
277
|
eleq1d |
⊢ ( 𝑥 = 𝑒 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑒 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
| 279 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 280 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 281 |
278 279 280
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑒 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 282 |
|
oveq1 |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( 𝑘 − 𝑙 ) = ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) |
| 283 |
282
|
fveq2d |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( abs ‘ ( 𝑘 − 𝑙 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) |
| 284 |
283
|
eqeq2d |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) |
| 285 |
284
|
anbi2d |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) ) |
| 286 |
285
|
2rexbidv |
⊢ ( 𝑘 = ( ∗ ‘ 𝑒 ) → ( ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) ) |
| 287 |
286
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑘 = ( ∗ ‘ 𝑒 ) ) → ( ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) ) |
| 288 |
|
fveq2 |
⊢ ( 𝑥 = 𝑓 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑓 ) ) |
| 289 |
288
|
eleq1d |
⊢ ( 𝑥 = 𝑓 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑓 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ) |
| 290 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 291 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 292 |
289 290 291
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑓 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 293 |
|
oveq2 |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ( ∗ ‘ 𝑒 ) − 𝑙 ) = ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) |
| 294 |
293
|
fveq2d |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) |
| 295 |
294
|
eqeq2d |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) |
| 296 |
295
|
anbi2d |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
| 297 |
296
|
rexbidv |
⊢ ( 𝑙 = ( ∗ ‘ 𝑓 ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
| 298 |
297
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑙 = ( ∗ ‘ 𝑓 ) ) → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
| 299 |
|
simprl |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) |
| 300 |
299
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) ) |
| 301 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
| 302 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 303 |
301 302
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ℂ ) |
| 304 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑡 ∈ ℝ ) |
| 305 |
304
|
recnd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑡 ∈ ℂ ) |
| 306 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 307 |
301 306
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ℂ ) |
| 308 |
307 303
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
| 309 |
305 308
|
mulcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑡 · ( 𝑏 − 𝑎 ) ) ∈ ℂ ) |
| 310 |
303 309
|
cjaddd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) ) |
| 311 |
305 308
|
cjmuld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 312 |
304
|
cjred |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑡 ) = 𝑡 ) |
| 313 |
307 303
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) |
| 314 |
312 313
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑡 ) · ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
| 315 |
311 314
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) = ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
| 316 |
315
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑎 ) + ( ∗ ‘ ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
| 317 |
300 310 316
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) |
| 318 |
|
simprr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
| 319 |
49
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑦 ∈ ℂ ) |
| 320 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 321 |
301 320
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ℂ ) |
| 322 |
319 321
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑦 − 𝑐 ) ∈ ℂ ) |
| 323 |
322
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑐 ) ) ) = ( abs ‘ ( 𝑦 − 𝑐 ) ) ) |
| 324 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 325 |
301 324
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑒 ∈ ℂ ) |
| 326 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 327 |
301 326
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑓 ∈ ℂ ) |
| 328 |
325 327
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑒 − 𝑓 ) ∈ ℂ ) |
| 329 |
328
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
| 330 |
318 323 329
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑐 ) ) ) = ( abs ‘ ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 331 |
319 321
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑦 − 𝑐 ) ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) |
| 332 |
331
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 333 |
325 327
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑒 − 𝑓 ) ) = ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) |
| 334 |
333
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) |
| 335 |
330 332 334
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) |
| 336 |
317 335
|
jca |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) |
| 337 |
336
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
| 338 |
337
|
reximdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ) |
| 339 |
338
|
imp |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) |
| 340 |
292 298 339
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) |
| 341 |
340
|
r19.29an |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑒 ) − 𝑙 ) ) ) ) |
| 342 |
281 287 341
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 343 |
342
|
r19.29an |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑐 ) ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 344 |
269 276 343
|
rspcedvd |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 345 |
344
|
r19.29an |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 346 |
262 266 345
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 347 |
346
|
r19.29an |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( ( ∗ ‘ 𝑎 ) + ( 𝑡 · ( ℎ − ( ∗ ‘ 𝑎 ) ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 348 |
254 259 347
|
rspcedvd |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 349 |
348
|
r19.29an |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 350 |
200
|
anbi1d |
⊢ ( 𝑎 = 𝑔 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 351 |
350
|
rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 352 |
351
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 353 |
352
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 354 |
353
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 355 |
213
|
anbi1d |
⊢ ( 𝑏 = ℎ → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 356 |
355
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 357 |
356
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 358 |
357
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 359 |
|
oveq2 |
⊢ ( 𝑐 = 𝑖 → ( ( ∗ ‘ 𝑦 ) − 𝑐 ) = ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) |
| 360 |
359
|
fveq2d |
⊢ ( 𝑐 = 𝑖 → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) ) |
| 361 |
360
|
eqeq1d |
⊢ ( 𝑐 = 𝑖 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 362 |
361
|
anbi2d |
⊢ ( 𝑐 = 𝑖 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 363 |
362
|
rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 364 |
363
|
2rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 365 |
364
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 366 |
|
oveq1 |
⊢ ( 𝑒 = 𝑘 → ( 𝑒 − 𝑓 ) = ( 𝑘 − 𝑓 ) ) |
| 367 |
366
|
fveq2d |
⊢ ( 𝑒 = 𝑘 → ( abs ‘ ( 𝑒 − 𝑓 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) |
| 368 |
367
|
eqeq2d |
⊢ ( 𝑒 = 𝑘 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ) |
| 369 |
368
|
anbi2d |
⊢ ( 𝑒 = 𝑘 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ) ) |
| 370 |
369
|
2rexbidv |
⊢ ( 𝑒 = 𝑘 → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ) ) |
| 371 |
370
|
cbvrexvw |
⊢ ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ) |
| 372 |
|
oveq2 |
⊢ ( 𝑓 = 𝑙 → ( 𝑘 − 𝑓 ) = ( 𝑘 − 𝑙 ) ) |
| 373 |
372
|
fveq2d |
⊢ ( 𝑓 = 𝑙 → ( abs ‘ ( 𝑘 − 𝑓 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) |
| 374 |
373
|
eqeq2d |
⊢ ( 𝑓 = 𝑙 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 375 |
374
|
anbi2d |
⊢ ( 𝑓 = 𝑙 → ( ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 376 |
375
|
rexbidv |
⊢ ( 𝑓 = 𝑙 → ( ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) ) |
| 377 |
376
|
cbvrexvw |
⊢ ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 378 |
377
|
rexbii |
⊢ ( ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑓 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 379 |
371 378
|
bitri |
⊢ ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 380 |
379
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 381 |
365 380
|
bitri |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 382 |
381
|
rexbii |
⊢ ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 383 |
358 382
|
bitri |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 384 |
383
|
rexbii |
⊢ ( ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( 𝑏 − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 385 |
354 384
|
bitri |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑘 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑙 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑔 + ( 𝑡 · ( ℎ − 𝑔 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑖 ) ) = ( abs ‘ ( 𝑘 − 𝑙 ) ) ) ) |
| 386 |
349 385
|
sylibr |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 387 |
386
|
ex |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 388 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 389 |
|
simplr |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 390 |
53 388 389
|
rspcdva |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 391 |
|
neeq1 |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( 𝑔 ≠ 𝑗 ↔ ( ∗ ‘ 𝑎 ) ≠ 𝑗 ) ) |
| 392 |
|
oveq2 |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( ∗ ‘ 𝑦 ) − 𝑔 ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) |
| 393 |
392
|
fveq2d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
| 394 |
393
|
eqeq1d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ) ) |
| 395 |
391 394
|
3anbi12d |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 396 |
395
|
rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 397 |
396
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 398 |
397
|
2rexbidv |
⊢ ( 𝑔 = ( ∗ ‘ 𝑎 ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 399 |
398
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑔 = ( ∗ ‘ 𝑎 ) ) → ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 400 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 401 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 402 |
72 400 401
|
rspcdva |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 403 |
|
oveq1 |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ℎ − 𝑖 ) = ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) |
| 404 |
403
|
fveq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( abs ‘ ( ℎ − 𝑖 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ) |
| 405 |
404
|
eqeq2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ) ) |
| 406 |
405
|
3anbi2d |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 407 |
406
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 408 |
407
|
2rexbidv |
⊢ ( ℎ = ( ∗ ‘ 𝑏 ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 409 |
408
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ ℎ = ( ∗ ‘ 𝑏 ) ) → ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 410 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 411 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 412 |
89 410 411
|
rspcdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 413 |
|
oveq2 |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ∗ ‘ 𝑏 ) − 𝑖 ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) |
| 414 |
413
|
fveq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 415 |
414
|
eqeq2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
| 416 |
415
|
3anbi2d |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 417 |
416
|
rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 418 |
417
|
2rexbidv |
⊢ ( 𝑖 = ( ∗ ‘ 𝑐 ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 419 |
418
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑖 = ( ∗ ‘ 𝑐 ) ) → ( ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 420 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 421 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 422 |
106 420 421
|
rspcdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑑 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 423 |
|
neeq2 |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ↔ ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) ) |
| 424 |
|
oveq2 |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ∗ ‘ 𝑦 ) − 𝑗 ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) |
| 425 |
424
|
fveq2d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) ) |
| 426 |
425
|
eqeq1d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 427 |
423 426
|
3anbi13d |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 428 |
427
|
2rexbidv |
⊢ ( 𝑗 = ( ∗ ‘ 𝑑 ) → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 429 |
428
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑗 = ( ∗ ‘ 𝑑 ) ) → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 430 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
| 431 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 432 |
430 431
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑎 ∈ ℂ ) |
| 433 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 434 |
430 433
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑑 ∈ ℂ ) |
| 435 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → 𝑎 ≠ 𝑑 ) |
| 436 |
|
cj11 |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑑 ∈ ℂ ) → ( ( ∗ ‘ 𝑎 ) = ( ∗ ‘ 𝑑 ) ↔ 𝑎 = 𝑑 ) ) |
| 437 |
436
|
necon3bid |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑑 ∈ ℂ ) → ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ↔ 𝑎 ≠ 𝑑 ) ) |
| 438 |
437
|
biimpar |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑑 ∈ ℂ ) ∧ 𝑎 ≠ 𝑑 ) → ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) |
| 439 |
432 434 435 438
|
syl21anc |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑎 ≠ 𝑑 ) → ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) |
| 440 |
439
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( 𝑎 ≠ 𝑑 → ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ) ) |
| 441 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) |
| 442 |
49
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑦 ∈ ℂ ) |
| 443 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
| 444 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 445 |
443 444
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑎 ∈ ℂ ) |
| 446 |
442 445
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( 𝑦 − 𝑎 ) ∈ ℂ ) |
| 447 |
446
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑎 ) ) ) = ( abs ‘ ( 𝑦 − 𝑎 ) ) ) |
| 448 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 449 |
443 448
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑏 ∈ ℂ ) |
| 450 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 451 |
443 450
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → 𝑐 ∈ ℂ ) |
| 452 |
449 451
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( 𝑏 − 𝑐 ) ∈ ℂ ) |
| 453 |
452
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) |
| 454 |
441 447 453
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑎 ) ) ) = ( abs ‘ ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) ) |
| 455 |
442 445
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( ∗ ‘ ( 𝑦 − 𝑎 ) ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) |
| 456 |
455
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
| 457 |
449 451
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( ∗ ‘ ( 𝑏 − 𝑐 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) |
| 458 |
457
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 459 |
454 456 458
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 460 |
459
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
| 461 |
49
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → 𝑦 ∈ ℂ ) |
| 462 |
123
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( 𝐶 ‘ 𝑛 ) ⊆ ℂ ) |
| 463 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 464 |
462 463
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → 𝑑 ∈ ℂ ) |
| 465 |
461 464
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( 𝑦 − 𝑑 ) ∈ ℂ ) |
| 466 |
465
|
abscjd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑑 ) ) ) = ( abs ‘ ( 𝑦 − 𝑑 ) ) ) |
| 467 |
461 464
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( ∗ ‘ ( 𝑦 − 𝑑 ) ) = ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) |
| 468 |
467
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( abs ‘ ( ∗ ‘ ( 𝑦 − 𝑑 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) ) |
| 469 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
| 470 |
466 468 469
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
| 471 |
470
|
ex |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 472 |
440 460 471
|
3anim123d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 473 |
472
|
reximdva |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 474 |
473
|
reximdva |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 475 |
474
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ ( ∗ ‘ 𝑑 ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑑 ) ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 476 |
422 429 475
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 477 |
476
|
r19.29an |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 478 |
412 419 477
|
rspcedvd |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 479 |
478
|
r19.29an |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑏 ) − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 480 |
402 409 479
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 481 |
480
|
r19.29an |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( ( ∗ ‘ 𝑎 ) ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − ( ∗ ‘ 𝑎 ) ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 482 |
390 399 481
|
rspcedvd |
⊢ ( ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 483 |
482
|
r19.29an |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 484 |
|
neeq1 |
⊢ ( 𝑎 = 𝑔 → ( 𝑎 ≠ 𝑑 ↔ 𝑔 ≠ 𝑑 ) ) |
| 485 |
|
oveq2 |
⊢ ( 𝑎 = 𝑔 → ( ( ∗ ‘ 𝑦 ) − 𝑎 ) = ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) |
| 486 |
485
|
fveq2d |
⊢ ( 𝑎 = 𝑔 → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) ) |
| 487 |
486
|
eqeq1d |
⊢ ( 𝑎 = 𝑔 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) ) |
| 488 |
484 487
|
3anbi12d |
⊢ ( 𝑎 = 𝑔 → ( ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 489 |
488
|
rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 490 |
489
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 491 |
490
|
2rexbidv |
⊢ ( 𝑎 = 𝑔 → ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 492 |
491
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 493 |
|
oveq1 |
⊢ ( 𝑏 = ℎ → ( 𝑏 − 𝑐 ) = ( ℎ − 𝑐 ) ) |
| 494 |
493
|
fveq2d |
⊢ ( 𝑏 = ℎ → ( abs ‘ ( 𝑏 − 𝑐 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ) |
| 495 |
494
|
eqeq2d |
⊢ ( 𝑏 = ℎ → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ) ) |
| 496 |
495
|
3anbi2d |
⊢ ( 𝑏 = ℎ → ( ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 497 |
496
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 498 |
497
|
2rexbidv |
⊢ ( 𝑏 = ℎ → ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 499 |
498
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 500 |
|
oveq2 |
⊢ ( 𝑐 = 𝑖 → ( ℎ − 𝑐 ) = ( ℎ − 𝑖 ) ) |
| 501 |
500
|
fveq2d |
⊢ ( 𝑐 = 𝑖 → ( abs ‘ ( ℎ − 𝑐 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ) |
| 502 |
501
|
eqeq2d |
⊢ ( 𝑐 = 𝑖 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ) ) |
| 503 |
502
|
3anbi2d |
⊢ ( 𝑐 = 𝑖 → ( ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 504 |
503
|
rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 505 |
504
|
2rexbidv |
⊢ ( 𝑐 = 𝑖 → ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 506 |
505
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 507 |
|
neeq2 |
⊢ ( 𝑑 = 𝑗 → ( 𝑔 ≠ 𝑑 ↔ 𝑔 ≠ 𝑗 ) ) |
| 508 |
|
oveq2 |
⊢ ( 𝑑 = 𝑗 → ( ( ∗ ‘ 𝑦 ) − 𝑑 ) = ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) |
| 509 |
508
|
fveq2d |
⊢ ( 𝑑 = 𝑗 → ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) ) |
| 510 |
509
|
eqeq1d |
⊢ ( 𝑑 = 𝑗 → ( ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ↔ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 511 |
507 510
|
3anbi13d |
⊢ ( 𝑑 = 𝑗 → ( ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 512 |
511
|
2rexbidv |
⊢ ( 𝑑 = 𝑗 → ( ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 513 |
512
|
cbvrexvw |
⊢ ( ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 514 |
513
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 515 |
506 514
|
bitri |
⊢ ( ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 516 |
515
|
rexbii |
⊢ ( ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 517 |
499 516
|
bitri |
⊢ ( ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 518 |
517
|
rexbii |
⊢ ( ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 519 |
492 518
|
bitri |
⊢ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐶 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑖 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑗 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑔 ≠ 𝑗 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑔 ) ) = ( abs ‘ ( ℎ − 𝑖 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑗 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 520 |
483 519
|
sylibr |
⊢ ( ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) |
| 521 |
520
|
ex |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) → ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 522 |
251 387 521
|
3orim123d |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑦 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) |
| 523 |
51 522
|
mpd |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 524 |
50 523
|
jca |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ( ∗ ‘ 𝑦 ) ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) |
| 525 |
45
|
adantr |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → 𝑛 ∈ On ) |
| 526 |
1 525 46
|
constrsuc |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( ( ∗ ‘ 𝑦 ) ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( ∗ ‘ 𝑦 ) = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑡 ∈ ℝ ( ( ∗ ‘ 𝑦 ) = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑛 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( ( ∗ ‘ 𝑦 ) − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) ) |
| 527 |
524 526
|
mpbird |
⊢ ( ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) |
| 528 |
527
|
ralrimiva |
⊢ ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ∀ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) |
| 529 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑦 ) ) |
| 530 |
529
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
| 531 |
530
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ∀ 𝑦 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) |
| 532 |
528 531
|
sylibr |
⊢ ( ( 𝑛 ∈ On ∧ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) |
| 533 |
532
|
ex |
⊢ ( 𝑛 ∈ On → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) → ∀ 𝑥 ∈ ( 𝐶 ‘ suc 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ suc 𝑛 ) ) ) |
| 534 |
|
simpr |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 535 |
|
vex |
⊢ 𝑚 ∈ V |
| 536 |
535
|
a1i |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → 𝑚 ∈ V ) |
| 537 |
|
simpll |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → Lim 𝑚 ) |
| 538 |
1 536 537
|
constrlim |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ( 𝐶 ‘ 𝑚 ) = ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ) |
| 539 |
534 538
|
eleqtrd |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → 𝑦 ∈ ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ) |
| 540 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑚 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) |
| 541 |
539 540
|
sylib |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ∃ 𝑧 ∈ 𝑚 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) |
| 542 |
529
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑧 ) ↔ ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
| 543 |
|
fveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑧 ) ) |
| 544 |
543
|
eleq2d |
⊢ ( 𝑛 = 𝑧 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
| 545 |
543 544
|
raleqbidv |
⊢ ( 𝑛 = 𝑧 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ↔ ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑧 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
| 546 |
|
simp-4r |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 547 |
|
simplr |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → 𝑧 ∈ 𝑚 ) |
| 548 |
545 546 547
|
rspcdva |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑧 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑧 ) ) |
| 549 |
|
simpr |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) |
| 550 |
542 548 549
|
rspcdva |
⊢ ( ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) |
| 551 |
550
|
ex |
⊢ ( ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑧 ∈ 𝑚 ) → ( 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
| 552 |
551
|
reximdva |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ( ∃ 𝑧 ∈ 𝑚 𝑦 ∈ ( 𝐶 ‘ 𝑧 ) → ∃ 𝑧 ∈ 𝑚 ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) ) |
| 553 |
541 552
|
mpd |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ∃ 𝑧 ∈ 𝑚 ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) |
| 554 |
|
eliun |
⊢ ( ( ∗ ‘ 𝑦 ) ∈ ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑚 ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑧 ) ) |
| 555 |
553 554
|
sylibr |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ( ∗ ‘ 𝑦 ) ∈ ∪ 𝑧 ∈ 𝑚 ( 𝐶 ‘ 𝑧 ) ) |
| 556 |
555 538
|
eleqtrrd |
⊢ ( ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ) → ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 557 |
556
|
ralrimiva |
⊢ ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ∀ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 558 |
529
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑚 ) ) ) |
| 559 |
558
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ↔ ∀ 𝑦 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑦 ) ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 560 |
557 559
|
sylibr |
⊢ ( ( Lim 𝑚 ∧ ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 561 |
560
|
ex |
⊢ ( Lim 𝑚 → ( ∀ 𝑛 ∈ 𝑚 ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑛 ) → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑚 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑚 ) ) ) |
| 562 |
6 9 12 15 44 533 561
|
tfinds |
⊢ ( 𝑁 ∈ On → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 563 |
2 562
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 564 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑋 ) ) |
| 565 |
564
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ↔ ( ∗ ‘ 𝑋 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
| 566 |
565
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) ↔ ( ∗ ‘ 𝑋 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
| 567 |
3 566
|
rspcdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐶 ‘ 𝑁 ) ( ∗ ‘ 𝑥 ) ∈ ( 𝐶 ‘ 𝑁 ) → ( ∗ ‘ 𝑋 ) ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
| 568 |
563 567
|
mpd |
⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |