Description: A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| Assertion | negne0bd | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | 1 | negeq0d | ⊢ ( 𝜑 → ( 𝐴 = 0 ↔ - 𝐴 = 0 ) ) | 
| 3 | 2 | necon3bid | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 ↔ - 𝐴 ≠ 0 ) ) |