Description: A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | negidd.1 | |- ( ph -> A e. CC ) |
|
Assertion | negne0bd | |- ( ph -> ( A =/= 0 <-> -u A =/= 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | 1 | negeq0d | |- ( ph -> ( A = 0 <-> -u A = 0 ) ) |
3 | 2 | necon3bid | |- ( ph -> ( A =/= 0 <-> -u A =/= 0 ) ) |