Description: A number is zero iff its negative is zero. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | negidd.1 | |- ( ph -> A e. CC ) |
|
Assertion | negeq0d | |- ( ph -> ( A = 0 <-> -u A = 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | negeq0 | |- ( A e. CC -> ( A = 0 <-> -u A = 0 ) ) |
|
3 | 1 2 | syl | |- ( ph -> ( A = 0 <-> -u A = 0 ) ) |