| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|
| 2 |
|
constrfin.1 |
|
| 3 |
|
fveq2 |
|
| 4 |
3
|
eleq1d |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
eleq1d |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
eleq1d |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
eleq1d |
|
| 11 |
1
|
constr0 |
|
| 12 |
|
prfi |
|
| 13 |
11 12
|
eqeltri |
|
| 14 |
|
nfv |
|
| 15 |
|
nfcv |
|
| 16 |
|
nfrab1 |
|
| 17 |
|
nnon |
|
| 18 |
17
|
adantr |
|
| 19 |
|
eqid |
|
| 20 |
1 18 19
|
constrsuc |
|
| 21 |
|
rabid |
|
| 22 |
20 21
|
bitr4di |
|
| 23 |
14 15 16 22
|
eqrd |
|
| 24 |
|
3unrab |
|
| 25 |
23 24
|
eqtr4di |
|
| 26 |
|
simpr |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
adantr |
|
| 29 |
28
|
adantr |
|
| 30 |
|
snfi |
|
| 31 |
30
|
a1i |
|
| 32 |
1 17
|
constrsscn |
|
| 33 |
32
|
ad9antr |
|
| 34 |
|
simp-8r |
|
| 35 |
|
simp-7r |
|
| 36 |
|
simp-6r |
|
| 37 |
|
simp-5r |
|
| 38 |
|
simpllr |
|
| 39 |
|
simplr |
|
| 40 |
|
simpr1 |
|
| 41 |
|
simpr2 |
|
| 42 |
|
simpr3 |
|
| 43 |
|
eqid |
|
| 44 |
33 34 35 36 37 38 39 40 41 42 43
|
constrrtll |
|
| 45 |
44
|
r19.29an |
|
| 46 |
45
|
r19.29an |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
|
rabsssn |
|
| 50 |
48 49
|
sylibr |
|
| 51 |
31 50
|
ssfid |
|
| 52 |
29 51
|
rabrexfi |
|
| 53 |
28 52
|
rabrexfi |
|
| 54 |
27 53
|
rabrexfi |
|
| 55 |
26 54
|
rabrexfi |
|
| 56 |
29
|
adantr |
|
| 57 |
|
snfi |
|
| 58 |
57
|
a1i |
|
| 59 |
32
|
ad10antr |
|
| 60 |
|
simp-9r |
|
| 61 |
|
simp-8r |
|
| 62 |
|
simp-7r |
|
| 63 |
|
simp-6r |
|
| 64 |
|
simp-5r |
|
| 65 |
|
simplr |
|
| 66 |
|
simprl |
|
| 67 |
|
simprr |
|
| 68 |
|
simp-4r |
|
| 69 |
59 60 61 62 63 64 65 66 67 68
|
constrrtlc2 |
|
| 70 |
69
|
r19.29an |
|
| 71 |
70
|
ex |
|
| 72 |
71
|
ralrimiva |
|
| 73 |
|
rabsssn |
|
| 74 |
72 73
|
sylibr |
|
| 75 |
58 74
|
ssfid |
|
| 76 |
|
prfi |
|
| 77 |
76
|
a1i |
|
| 78 |
|
simpllr |
|
| 79 |
|
1cnd |
|
| 80 |
|
ax-1ne0 |
|
| 81 |
80
|
a1i |
|
| 82 |
32
|
ad10antr |
|
| 83 |
|
simp-9r |
|
| 84 |
82 83
|
sseldd |
|
| 85 |
84
|
cjcld |
|
| 86 |
|
simp-8r |
|
| 87 |
82 86
|
sseldd |
|
| 88 |
87
|
cjcld |
|
| 89 |
88 85
|
subcld |
|
| 90 |
87 84
|
subcld |
|
| 91 |
|
simp-4r |
|
| 92 |
91
|
necomd |
|
| 93 |
87 84 92
|
subne0d |
|
| 94 |
89 90 93
|
divcld |
|
| 95 |
84 94
|
mulcld |
|
| 96 |
85 95
|
subcld |
|
| 97 |
|
simp-7r |
|
| 98 |
82 97
|
sseldd |
|
| 99 |
98
|
cjcld |
|
| 100 |
96 99
|
subcld |
|
| 101 |
98 94
|
mulcld |
|
| 102 |
100 101
|
subcld |
|
| 103 |
|
simp-6r |
|
| 104 |
|
simp-5r |
|
| 105 |
|
simplr |
|
| 106 |
|
simprl |
|
| 107 |
|
simprr |
|
| 108 |
|
eqid |
|
| 109 |
|
eqid |
|
| 110 |
|
eqid |
|
| 111 |
82 83 86 97 103 104 105 106 107 108 109 110 91
|
constrrtlc1 |
|
| 112 |
111
|
simprd |
|
| 113 |
102 94 112
|
divcld |
|
| 114 |
98 100
|
mulcld |
|
| 115 |
82 103
|
sseldd |
|
| 116 |
82 104
|
sseldd |
|
| 117 |
115 116
|
subcld |
|
| 118 |
115
|
cjcld |
|
| 119 |
116
|
cjcld |
|
| 120 |
118 119
|
subcld |
|
| 121 |
117 120
|
mulcld |
|
| 122 |
114 121
|
addcld |
|
| 123 |
122
|
negcld |
|
| 124 |
123 94 112
|
divcld |
|
| 125 |
78
|
sqcld |
|
| 126 |
125
|
mullidd |
|
| 127 |
126
|
oveq1d |
|
| 128 |
111
|
simpld |
|
| 129 |
127 128
|
eqtrd |
|
| 130 |
78 79 81 113 124 129
|
quad3d |
|
| 131 |
130
|
r19.29an |
|
| 132 |
131
|
ex |
|
| 133 |
132
|
ralrimiva |
|
| 134 |
|
rabsspr |
|
| 135 |
133 134
|
sylibr |
|
| 136 |
77 135
|
ssfid |
|
| 137 |
|
exmidne |
|
| 138 |
137
|
a1i |
|
| 139 |
75 136 138
|
mpjaodan |
|
| 140 |
56 139
|
rabrexfi |
|
| 141 |
29 140
|
rabrexfi |
|
| 142 |
28 141
|
rabrexfi |
|
| 143 |
27 142
|
rabrexfi |
|
| 144 |
26 143
|
rabrexfi |
|
| 145 |
55 144
|
unfid |
|
| 146 |
29
|
adantr |
|
| 147 |
146
|
adantr |
|
| 148 |
|
prfi |
|
| 149 |
148
|
a1i |
|
| 150 |
|
simplr |
|
| 151 |
|
1cnd |
|
| 152 |
80
|
a1i |
|
| 153 |
32
|
ad9antr |
|
| 154 |
|
simp-4r |
|
| 155 |
153 154
|
sseldd |
|
| 156 |
|
simpllr |
|
| 157 |
153 156
|
sseldd |
|
| 158 |
155 157
|
subcld |
|
| 159 |
158
|
cjcld |
|
| 160 |
158 159
|
mulcld |
|
| 161 |
|
simp-5r |
|
| 162 |
153 161
|
sseldd |
|
| 163 |
162
|
cjcld |
|
| 164 |
|
simp-8r |
|
| 165 |
153 164
|
sseldd |
|
| 166 |
162 165
|
addcld |
|
| 167 |
163 166
|
mulcld |
|
| 168 |
160 167
|
subcld |
|
| 169 |
|
simp-7r |
|
| 170 |
153 169
|
sseldd |
|
| 171 |
|
simp-6r |
|
| 172 |
153 171
|
sseldd |
|
| 173 |
170 172
|
subcld |
|
| 174 |
173
|
cjcld |
|
| 175 |
173 174
|
mulcld |
|
| 176 |
165
|
cjcld |
|
| 177 |
176 166
|
mulcld |
|
| 178 |
175 177
|
subcld |
|
| 179 |
168 178
|
subcld |
|
| 180 |
163 176
|
subcld |
|
| 181 |
162 165
|
cjsubd |
|
| 182 |
162 165
|
subcld |
|
| 183 |
|
simpr1 |
|
| 184 |
183
|
necomd |
|
| 185 |
162 165 184
|
subne0d |
|
| 186 |
182 185
|
cjne0d |
|
| 187 |
181 186
|
eqnetrrd |
|
| 188 |
179 180 187
|
divcld |
|
| 189 |
162 165
|
mulcld |
|
| 190 |
176 189
|
mulcld |
|
| 191 |
175 162
|
mulcld |
|
| 192 |
190 191
|
subcld |
|
| 193 |
163 189
|
mulcld |
|
| 194 |
160 165
|
mulcld |
|
| 195 |
193 194
|
subcld |
|
| 196 |
192 195
|
subcld |
|
| 197 |
196 180 187
|
divcld |
|
| 198 |
197
|
negcld |
|
| 199 |
150
|
sqcld |
|
| 200 |
199
|
mullidd |
|
| 201 |
200
|
oveq1d |
|
| 202 |
|
simpr2 |
|
| 203 |
|
simpr3 |
|
| 204 |
|
eqid |
|
| 205 |
|
eqid |
|
| 206 |
|
eqid |
|
| 207 |
|
eqid |
|
| 208 |
153 164 169 171 161 154 156 150 183 202 203 204 205 206 207
|
constrrtcc |
|
| 209 |
201 208
|
eqtrd |
|
| 210 |
150 151 152 188 198 209
|
quad3d |
|
| 211 |
210
|
ex |
|
| 212 |
211
|
ralrimiva |
|
| 213 |
|
rabsspr |
|
| 214 |
212 213
|
sylibr |
|
| 215 |
149 214
|
ssfid |
|
| 216 |
147 215
|
rabrexfi |
|
| 217 |
146 216
|
rabrexfi |
|
| 218 |
29 217
|
rabrexfi |
|
| 219 |
28 218
|
rabrexfi |
|
| 220 |
27 219
|
rabrexfi |
|
| 221 |
26 220
|
rabrexfi |
|
| 222 |
145 221
|
unfid |
|
| 223 |
25 222
|
eqeltrd |
|
| 224 |
223
|
ex |
|
| 225 |
4 6 8 10 13 224
|
finds |
|
| 226 |
2 225
|
syl |
|