Metamath Proof Explorer


Theorem rabsspr

Description: Conditions for a restricted class abstraction to be a subset of an unordered pair. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Assertion rabsspr x V | φ X Y x V φ x = X x = Y

Proof

Step Hyp Ref Expression
1 df-rab x V | φ = x | x V φ
2 dfpr2 X Y = x | x = X x = Y
3 1 2 sseq12i x V | φ X Y x | x V φ x | x = X x = Y
4 ss2ab x | x V φ x | x = X x = Y x x V φ x = X x = Y
5 impexp x V φ x = X x = Y x V φ x = X x = Y
6 5 albii x x V φ x = X x = Y x x V φ x = X x = Y
7 df-ral x V φ x = X x = Y x x V φ x = X x = Y
8 6 7 bitr4i x x V φ x = X x = Y x V φ x = X x = Y
9 3 4 8 3bitri x V | φ X Y x V φ x = X x = Y