Metamath Proof Explorer


Theorem rabsstp

Description: Conditions for a restricted class abstraction to be a subset of an unordered triplet. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Assertion rabsstp x V | φ X Y Z x V φ x = X x = Y x = Z

Proof

Step Hyp Ref Expression
1 df-rab x V | φ = x | x V φ
2 dftp2 X Y Z = x | x = X x = Y x = Z
3 1 2 sseq12i x V | φ X Y Z x | x V φ x | x = X x = Y x = Z
4 ss2ab x | x V φ x | x = X x = Y x = Z x x V φ x = X x = Y x = Z
5 impexp x V φ x = X x = Y x = Z x V φ x = X x = Y x = Z
6 5 albii x x V φ x = X x = Y x = Z x x V φ x = X x = Y x = Z
7 df-ral x V φ x = X x = Y x = Z x x V φ x = X x = Y x = Z
8 6 7 bitr4i x x V φ x = X x = Y x = Z x V φ x = X x = Y x = Z
9 3 4 8 3bitri x V | φ X Y Z x V φ x = X x = Y x = Z