Metamath Proof Explorer


Theorem 3unrab

Description: Union of three restricted class abstractions. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Assertion 3unrab x A | φ x A | ψ x A | χ = x A | φ ψ χ

Proof

Step Hyp Ref Expression
1 unrab x A | φ ψ x A | χ = x A | φ ψ χ
2 unrab x A | φ x A | ψ = x A | φ ψ
3 2 uneq1i x A | φ x A | ψ x A | χ = x A | φ ψ x A | χ
4 df-3or φ ψ χ φ ψ χ
5 4 rabbii x A | φ ψ χ = x A | φ ψ χ
6 1 3 5 3eqtr4i x A | φ x A | ψ x A | χ = x A | φ ψ χ