| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ 𝜓 ) } ∪ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) = { 𝑥 ∈ 𝐴 ∣ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) } |
| 2 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ 𝜓 ) } |
| 3 |
2
|
uneq1i |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ∪ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) = ( { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ 𝜓 ) } ∪ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
| 4 |
|
df-3or |
⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
| 5 |
4
|
rabbii |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) } = { 𝑥 ∈ 𝐴 ∣ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) } |
| 6 |
1 3 5
|
3eqtr4i |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ∪ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) } |