Metamath Proof Explorer


Theorem 3unrab

Description: Union of three restricted class abstractions. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Assertion 3unrab ( ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴𝜓 } ) ∪ { 𝑥𝐴𝜒 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓𝜒 ) }

Proof

Step Hyp Ref Expression
1 unrab ( { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } ∪ { 𝑥𝐴𝜒 } ) = { 𝑥𝐴 ∣ ( ( 𝜑𝜓 ) ∨ 𝜒 ) }
2 unrab ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴𝜓 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) }
3 2 uneq1i ( ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴𝜓 } ) ∪ { 𝑥𝐴𝜒 } ) = ( { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } ∪ { 𝑥𝐴𝜒 } )
4 df-3or ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ 𝜒 ) )
5 4 rabbii { 𝑥𝐴 ∣ ( 𝜑𝜓𝜒 ) } = { 𝑥𝐴 ∣ ( ( 𝜑𝜓 ) ∨ 𝜒 ) }
6 1 3 5 3eqtr4i ( ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴𝜓 } ) ∪ { 𝑥𝐴𝜒 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓𝜒 ) }