| Step |
Hyp |
Ref |
Expression |
| 1 |
|
focdmex |
|
| 2 |
1
|
imp |
|
| 3 |
|
foelrn |
|
| 4 |
|
fofn |
|
| 5 |
|
eqcom |
|
| 6 |
|
fniniseg |
|
| 7 |
6
|
biimpar |
|
| 8 |
7
|
anassrs |
|
| 9 |
5 8
|
sylan2br |
|
| 10 |
4 9
|
sylanl1 |
|
| 11 |
10
|
ex |
|
| 12 |
11
|
reximdva |
|
| 13 |
12
|
adantr |
|
| 14 |
3 13
|
mpd |
|
| 15 |
14
|
adantll |
|
| 16 |
15
|
ralrimiva |
|
| 17 |
|
eleq1 |
|
| 18 |
17
|
ac6sg |
|
| 19 |
2 16 18
|
sylc |
|
| 20 |
|
frn |
|
| 21 |
20
|
ad2antrl |
|
| 22 |
|
vex |
|
| 23 |
22
|
rnex |
|
| 24 |
23
|
elpw |
|
| 25 |
21 24
|
sylibr |
|
| 26 |
|
fof |
|
| 27 |
26
|
ad2antlr |
|
| 28 |
27 21
|
fssresd |
|
| 29 |
|
ffn |
|
| 30 |
29
|
ad2antrl |
|
| 31 |
|
dffn3 |
|
| 32 |
30 31
|
sylib |
|
| 33 |
|
fvres |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
fveq2d |
|
| 36 |
|
nfv |
|
| 37 |
|
nfv |
|
| 38 |
|
nfra1 |
|
| 39 |
37 38
|
nfan |
|
| 40 |
36 39
|
nfan |
|
| 41 |
|
nfv |
|
| 42 |
40 41
|
nfan |
|
| 43 |
|
simpr |
|
| 44 |
43
|
fveq2d |
|
| 45 |
4
|
ad5antlr |
|
| 46 |
|
simplrr |
|
| 47 |
46
|
ad2antrr |
|
| 48 |
|
simplr |
|
| 49 |
|
rspa |
|
| 50 |
47 48 49
|
syl2anc |
|
| 51 |
|
fniniseg |
|
| 52 |
51
|
simplbda |
|
| 53 |
45 50 52
|
syl2anc |
|
| 54 |
44 53
|
eqtr3d |
|
| 55 |
54
|
fveq2d |
|
| 56 |
55 43
|
eqtrd |
|
| 57 |
|
fvelrnb |
|
| 58 |
57
|
biimpa |
|
| 59 |
30 58
|
sylan |
|
| 60 |
42 56 59
|
r19.29af |
|
| 61 |
35 60
|
eqtrd |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
32
|
ffvelcdmda |
|
| 64 |
|
fvres |
|
| 65 |
63 64
|
syl |
|
| 66 |
4
|
ad3antlr |
|
| 67 |
|
simplrr |
|
| 68 |
|
simpr |
|
| 69 |
67 68 49
|
syl2anc |
|
| 70 |
66 69 52
|
syl2anc |
|
| 71 |
65 70
|
eqtrd |
|
| 72 |
71
|
ex |
|
| 73 |
40 72
|
ralrimi |
|
| 74 |
28 32 62 73
|
2fvidf1od |
|
| 75 |
|
reseq2 |
|
| 76 |
|
id |
|
| 77 |
|
eqidd |
|
| 78 |
75 76 77
|
f1oeq123d |
|
| 79 |
78
|
rspcev |
|
| 80 |
25 74 79
|
syl2anc |
|
| 81 |
19 80
|
exlimddv |
|