| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rab |
|- { x e. V | ph } = { x | ( x e. V /\ ph ) } |
| 2 |
|
dftp2 |
|- { X , Y , Z } = { x | ( x = X \/ x = Y \/ x = Z ) } |
| 3 |
1 2
|
sseq12i |
|- ( { x e. V | ph } C_ { X , Y , Z } <-> { x | ( x e. V /\ ph ) } C_ { x | ( x = X \/ x = Y \/ x = Z ) } ) |
| 4 |
|
ss2ab |
|- ( { x | ( x e. V /\ ph ) } C_ { x | ( x = X \/ x = Y \/ x = Z ) } <-> A. x ( ( x e. V /\ ph ) -> ( x = X \/ x = Y \/ x = Z ) ) ) |
| 5 |
|
impexp |
|- ( ( ( x e. V /\ ph ) -> ( x = X \/ x = Y \/ x = Z ) ) <-> ( x e. V -> ( ph -> ( x = X \/ x = Y \/ x = Z ) ) ) ) |
| 6 |
5
|
albii |
|- ( A. x ( ( x e. V /\ ph ) -> ( x = X \/ x = Y \/ x = Z ) ) <-> A. x ( x e. V -> ( ph -> ( x = X \/ x = Y \/ x = Z ) ) ) ) |
| 7 |
|
df-ral |
|- ( A. x e. V ( ph -> ( x = X \/ x = Y \/ x = Z ) ) <-> A. x ( x e. V -> ( ph -> ( x = X \/ x = Y \/ x = Z ) ) ) ) |
| 8 |
6 7
|
bitr4i |
|- ( A. x ( ( x e. V /\ ph ) -> ( x = X \/ x = Y \/ x = Z ) ) <-> A. x e. V ( ph -> ( x = X \/ x = Y \/ x = Z ) ) ) |
| 9 |
3 4 8
|
3bitri |
|- ( { x e. V | ph } C_ { X , Y , Z } <-> A. x e. V ( ph -> ( x = X \/ x = Y \/ x = Z ) ) ) |