Metamath Proof Explorer


Theorem rabsspr

Description: Conditions for a restricted class abstraction to be a subset of an unordered pair. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Assertion rabsspr ( { 𝑥𝑉𝜑 } ⊆ { 𝑋 , 𝑌 } ↔ ∀ 𝑥𝑉 ( 𝜑 → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝑉𝜑 } = { 𝑥 ∣ ( 𝑥𝑉𝜑 ) }
2 dfpr2 { 𝑋 , 𝑌 } = { 𝑥 ∣ ( 𝑥 = 𝑋𝑥 = 𝑌 ) }
3 1 2 sseq12i ( { 𝑥𝑉𝜑 } ⊆ { 𝑋 , 𝑌 } ↔ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥 = 𝑋𝑥 = 𝑌 ) } )
4 ss2ab ( { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥 = 𝑋𝑥 = 𝑌 ) } ↔ ∀ 𝑥 ( ( 𝑥𝑉𝜑 ) → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) )
5 impexp ( ( ( 𝑥𝑉𝜑 ) → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) ↔ ( 𝑥𝑉 → ( 𝜑 → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) ) )
6 5 albii ( ∀ 𝑥 ( ( 𝑥𝑉𝜑 ) → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) ↔ ∀ 𝑥 ( 𝑥𝑉 → ( 𝜑 → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) ) )
7 df-ral ( ∀ 𝑥𝑉 ( 𝜑 → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) ↔ ∀ 𝑥 ( 𝑥𝑉 → ( 𝜑 → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) ) )
8 6 7 bitr4i ( ∀ 𝑥 ( ( 𝑥𝑉𝜑 ) → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) ↔ ∀ 𝑥𝑉 ( 𝜑 → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) )
9 3 4 8 3bitri ( { 𝑥𝑉𝜑 } ⊆ { 𝑋 , 𝑌 } ↔ ∀ 𝑥𝑉 ( 𝜑 → ( 𝑥 = 𝑋𝑥 = 𝑌 ) ) )