Metamath Proof Explorer


Theorem rabsspr

Description: Conditions for a restricted class abstraction to be a subset of an unordered pair. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Assertion rabsspr
|- ( { x e. V | ph } C_ { X , Y } <-> A. x e. V ( ph -> ( x = X \/ x = Y ) ) )

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. V | ph } = { x | ( x e. V /\ ph ) }
2 dfpr2
 |-  { X , Y } = { x | ( x = X \/ x = Y ) }
3 1 2 sseq12i
 |-  ( { x e. V | ph } C_ { X , Y } <-> { x | ( x e. V /\ ph ) } C_ { x | ( x = X \/ x = Y ) } )
4 ss2ab
 |-  ( { x | ( x e. V /\ ph ) } C_ { x | ( x = X \/ x = Y ) } <-> A. x ( ( x e. V /\ ph ) -> ( x = X \/ x = Y ) ) )
5 impexp
 |-  ( ( ( x e. V /\ ph ) -> ( x = X \/ x = Y ) ) <-> ( x e. V -> ( ph -> ( x = X \/ x = Y ) ) ) )
6 5 albii
 |-  ( A. x ( ( x e. V /\ ph ) -> ( x = X \/ x = Y ) ) <-> A. x ( x e. V -> ( ph -> ( x = X \/ x = Y ) ) ) )
7 df-ral
 |-  ( A. x e. V ( ph -> ( x = X \/ x = Y ) ) <-> A. x ( x e. V -> ( ph -> ( x = X \/ x = Y ) ) ) )
8 6 7 bitr4i
 |-  ( A. x ( ( x e. V /\ ph ) -> ( x = X \/ x = Y ) ) <-> A. x e. V ( ph -> ( x = X \/ x = Y ) ) )
9 3 4 8 3bitri
 |-  ( { x e. V | ph } C_ { X , Y } <-> A. x e. V ( ph -> ( x = X \/ x = Y ) ) )