Metamath Proof Explorer


Theorem quad3d

Description: Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019) Deduction version. (Revised by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses quad3d.1 φ X
quad3d.2 φ A
quad3d.3 φ A 0
quad3d.4 φ B
quad3d.5 φ C
quad3d.6 φ A X 2 + B X + C = 0
Assertion quad3d φ X = - B + B 2 4 A C 2 A X = - B - B 2 4 A C 2 A

Proof

Step Hyp Ref Expression
1 quad3d.1 φ X
2 quad3d.2 φ A
3 quad3d.3 φ A 0
4 quad3d.4 φ B
5 quad3d.5 φ C
6 quad3d.6 φ A X 2 + B X + C = 0
7 2cnd φ 2
8 7 2 mulcld φ 2 A
9 2ne0 2 0
10 9 a1i φ 2 0
11 7 2 10 3 mulne0d φ 2 A 0
12 4 8 11 divcld φ B 2 A
13 1 12 addcld φ X + B 2 A
14 8 13 sqmuld φ 2 A X + B 2 A 2 = 2 A 2 X + B 2 A 2
15 1 12 binom2d φ X + B 2 A 2 = X 2 + 2 X B 2 A + B 2 A 2
16 1 sqcld φ X 2
17 2 16 mulcld φ A X 2
18 4 1 mulcld φ B X
19 17 18 2 3 divdird φ A X 2 + B X A = A X 2 A + B X A
20 16 2 3 divcan3d φ A X 2 A = X 2
21 4 1 2 3 div23d φ B X A = B A X
22 20 21 oveq12d φ A X 2 A + B X A = X 2 + B A X
23 19 22 eqtr2d φ X 2 + B A X = A X 2 + B X A
24 4 2 3 divcld φ B A
25 24 1 mulcomd φ B A X = X B A
26 1 24 mulcld φ X B A
27 26 7 10 divcan2d φ 2 X B A 2 = X B A
28 1 24 7 10 divassd φ X B A 2 = X B A 2
29 4 2 7 3 10 divdiv1d φ B A 2 = B A 2
30 2 7 mulcomd φ A 2 = 2 A
31 30 oveq2d φ B A 2 = B 2 A
32 29 31 eqtrd φ B A 2 = B 2 A
33 32 oveq2d φ X B A 2 = X B 2 A
34 28 33 eqtrd φ X B A 2 = X B 2 A
35 34 oveq2d φ 2 X B A 2 = 2 X B 2 A
36 25 27 35 3eqtr2d φ B A X = 2 X B 2 A
37 36 oveq2d φ X 2 + B A X = X 2 + 2 X B 2 A
38 17 18 addcld φ A X 2 + B X
39 17 18 5 addassd φ A X 2 + B X + C = A X 2 + B X + C
40 38 5 39 mvlraddd φ A X 2 + B X = A X 2 + B X + C - C
41 6 oveq1d φ A X 2 + B X + C - C = 0 C
42 df-neg C = 0 C
43 41 42 eqtr4di φ A X 2 + B X + C - C = C
44 40 43 eqtrd φ A X 2 + B X = C
45 44 oveq1d φ A X 2 + B X A = C A
46 23 37 45 3eqtr3d φ X 2 + 2 X B 2 A = C A
47 46 oveq1d φ X 2 + 2 X B 2 A + B 2 A 2 = C A + B 2 A 2
48 15 47 eqtrd φ X + B 2 A 2 = C A + B 2 A 2
49 5 negcld φ C
50 49 2 3 divcld φ C A
51 12 sqcld φ B 2 A 2
52 50 51 addcomd φ C A + B 2 A 2 = B 2 A 2 + C A
53 4 8 11 sqdivd φ B 2 A 2 = B 2 2 A 2
54 4cn 4
55 54 a1i φ 4
56 55 2 mulcld φ 4 A
57 4ne0 4 0
58 57 a1i φ 4 0
59 55 2 58 3 mulne0d φ 4 A 0
60 56 56 49 2 59 3 divmuldivd φ 4 A 4 A C A = 4 A C 4 A A
61 56 59 dividd φ 4 A 4 A = 1
62 61 eqcomd φ 1 = 4 A 4 A
63 62 oveq1d φ 1 C A = 4 A 4 A C A
64 50 mullidd φ 1 C A = C A
65 63 64 eqtr3d φ 4 A 4 A C A = C A
66 5 mulm1d φ -1 C = C
67 66 eqcomd φ C = -1 C
68 67 oveq2d φ 4 A C = 4 A -1 C
69 neg1cn 1
70 69 a1i φ 1
71 56 70 5 mulassd φ 4 A -1 C = 4 A -1 C
72 68 71 eqtr4d φ 4 A C = 4 A -1 C
73 56 70 mulcomd φ 4 A -1 = -1 4 A
74 73 oveq1d φ 4 A -1 C = -1 4 A C
75 70 56 5 mulassd φ -1 4 A C = -1 4 A C
76 72 74 75 3eqtrd φ 4 A C = -1 4 A C
77 55 2 5 mulassd φ 4 A C = 4 A C
78 77 oveq2d φ -1 4 A C = -1 4 A C
79 2 5 mulcld φ A C
80 55 79 mulcld φ 4 A C
81 80 mulm1d φ -1 4 A C = 4 A C
82 76 78 81 3eqtrd φ 4 A C = 4 A C
83 2t2e4 2 2 = 4
84 83 a1i φ 2 2 = 4
85 84 eqcomd φ 4 = 2 2
86 85 oveq1d φ 4 A = 2 2 A
87 86 oveq1d φ 4 A A = 2 2 A A
88 7 7 2 mulassd φ 2 2 A = 2 2 A
89 88 oveq1d φ 2 2 A A = 2 2 A A
90 87 89 eqtrd φ 4 A A = 2 2 A A
91 7 8 mulcomd φ 2 2 A = 2 A 2
92 91 oveq1d φ 2 2 A A = 2 A 2 A
93 8 7 2 mulassd φ 2 A 2 A = 2 A 2 A
94 90 92 93 3eqtrd φ 4 A A = 2 A 2 A
95 8 sqvald φ 2 A 2 = 2 A 2 A
96 94 95 eqtr4d φ 4 A A = 2 A 2
97 82 96 oveq12d φ 4 A C 4 A A = 4 A C 2 A 2
98 60 65 97 3eqtr3d φ C A = 4 A C 2 A 2
99 53 98 oveq12d φ B 2 A 2 + C A = B 2 2 A 2 + 4 A C 2 A 2
100 4 sqcld φ B 2
101 80 negcld φ 4 A C
102 8 sqcld φ 2 A 2
103 8 8 11 11 mulne0d φ 2 A 2 A 0
104 95 103 eqnetrd φ 2 A 2 0
105 100 101 102 104 divdird φ B 2 + 4 A C 2 A 2 = B 2 2 A 2 + 4 A C 2 A 2
106 100 80 negsubd φ B 2 + 4 A C = B 2 4 A C
107 106 oveq1d φ B 2 + 4 A C 2 A 2 = B 2 4 A C 2 A 2
108 99 105 107 3eqtr2d φ B 2 A 2 + C A = B 2 4 A C 2 A 2
109 48 52 108 3eqtrd φ X + B 2 A 2 = B 2 4 A C 2 A 2
110 109 oveq2d φ 2 A 2 X + B 2 A 2 = 2 A 2 B 2 4 A C 2 A 2
111 100 80 subcld φ B 2 4 A C
112 111 102 104 divcan2d φ 2 A 2 B 2 4 A C 2 A 2 = B 2 4 A C
113 14 110 112 3eqtrd φ 2 A X + B 2 A 2 = B 2 4 A C
114 8 13 mulcld φ 2 A X + B 2 A
115 eqsqrtor 2 A X + B 2 A B 2 4 A C 2 A X + B 2 A 2 = B 2 4 A C 2 A X + B 2 A = B 2 4 A C 2 A X + B 2 A = B 2 4 A C
116 114 111 115 syl2anc φ 2 A X + B 2 A 2 = B 2 4 A C 2 A X + B 2 A = B 2 4 A C 2 A X + B 2 A = B 2 4 A C
117 113 116 mpbid φ 2 A X + B 2 A = B 2 4 A C 2 A X + B 2 A = B 2 4 A C
118 111 sqrtcld φ B 2 4 A C
119 8 13 118 11 rdiv φ 2 A X + B 2 A = B 2 4 A C X + B 2 A = B 2 4 A C 2 A
120 118 8 11 divcld φ B 2 4 A C 2 A
121 1 12 120 addlsub φ X + B 2 A = B 2 4 A C 2 A X = B 2 4 A C 2 A B 2 A
122 4 8 11 divnegd φ B 2 A = B 2 A
123 122 oveq2d φ B 2 4 A C 2 A + B 2 A = B 2 4 A C 2 A + B 2 A
124 120 12 negsubd φ B 2 4 A C 2 A + B 2 A = B 2 4 A C 2 A B 2 A
125 4 negcld φ B
126 125 8 11 divcld φ B 2 A
127 120 126 addcomd φ B 2 4 A C 2 A + B 2 A = B 2 A + B 2 4 A C 2 A
128 123 124 127 3eqtr3d φ B 2 4 A C 2 A B 2 A = B 2 A + B 2 4 A C 2 A
129 125 118 8 11 divdird φ - B + B 2 4 A C 2 A = B 2 A + B 2 4 A C 2 A
130 128 129 eqtr4d φ B 2 4 A C 2 A B 2 A = - B + B 2 4 A C 2 A
131 130 eqeq2d φ X = B 2 4 A C 2 A B 2 A X = - B + B 2 4 A C 2 A
132 119 121 131 3bitrd φ 2 A X + B 2 A = B 2 4 A C X = - B + B 2 4 A C 2 A
133 118 negcld φ B 2 4 A C
134 8 13 133 11 rdiv φ 2 A X + B 2 A = B 2 4 A C X + B 2 A = B 2 4 A C 2 A
135 133 8 11 divcld φ B 2 4 A C 2 A
136 1 12 135 addlsub φ X + B 2 A = B 2 4 A C 2 A X = B 2 4 A C 2 A B 2 A
137 122 oveq2d φ B 2 4 A C 2 A + B 2 A = B 2 4 A C 2 A + B 2 A
138 135 12 negsubd φ B 2 4 A C 2 A + B 2 A = B 2 4 A C 2 A B 2 A
139 135 126 addcomd φ B 2 4 A C 2 A + B 2 A = B 2 A + B 2 4 A C 2 A
140 137 138 139 3eqtr3d φ B 2 4 A C 2 A B 2 A = B 2 A + B 2 4 A C 2 A
141 125 133 8 11 divdird φ - B + B 2 4 A C 2 A = B 2 A + B 2 4 A C 2 A
142 125 118 negsubd φ - B + B 2 4 A C = - B - B 2 4 A C
143 142 oveq1d φ - B + B 2 4 A C 2 A = - B - B 2 4 A C 2 A
144 140 141 143 3eqtr2d φ B 2 4 A C 2 A B 2 A = - B - B 2 4 A C 2 A
145 144 eqeq2d φ X = B 2 4 A C 2 A B 2 A X = - B - B 2 4 A C 2 A
146 134 136 145 3bitrd φ 2 A X + B 2 A = B 2 4 A C X = - B - B 2 4 A C 2 A
147 132 146 orbi12d φ 2 A X + B 2 A = B 2 4 A C 2 A X + B 2 A = B 2 4 A C X = - B + B 2 4 A C 2 A X = - B - B 2 4 A C 2 A
148 117 147 mpbid φ X = - B + B 2 4 A C 2 A X = - B - B 2 4 A C 2 A