Metamath Proof Explorer


Theorem mvlraddd

Description: Move the right term in a sum on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvlraddd.1 φA
mvlraddd.2 φB
mvlraddd.3 φA+B=C
Assertion mvlraddd φA=CB

Proof

Step Hyp Ref Expression
1 mvlraddd.1 φA
2 mvlraddd.2 φB
3 mvlraddd.3 φA+B=C
4 1 2 pncand φA+B-B=A
5 3 oveq1d φA+B-B=CB
6 4 5 eqtr3d φA=CB