Metamath Proof Explorer


Theorem rdiv

Description: Right-division. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a φA
ldiv.b φB
ldiv.c φC
rdiv.an0 φA0
Assertion rdiv φAB=CB=CA

Proof

Step Hyp Ref Expression
1 ldiv.a φA
2 ldiv.b φB
3 ldiv.c φC
4 rdiv.an0 φA0
5 1 2 mulcomd φAB=BA
6 5 eqeq1d φAB=CBA=C
7 2 1 3 4 ldiv φBA=CB=CA
8 6 7 bitrd φAB=CB=CA