Step |
Hyp |
Ref |
Expression |
1 |
|
quad3d.1 |
|- ( ph -> X e. CC ) |
2 |
|
quad3d.2 |
|- ( ph -> A e. CC ) |
3 |
|
quad3d.3 |
|- ( ph -> A =/= 0 ) |
4 |
|
quad3d.4 |
|- ( ph -> B e. CC ) |
5 |
|
quad3d.5 |
|- ( ph -> C e. CC ) |
6 |
|
quad3d.6 |
|- ( ph -> ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0 ) |
7 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
8 |
7 2
|
mulcld |
|- ( ph -> ( 2 x. A ) e. CC ) |
9 |
|
2ne0 |
|- 2 =/= 0 |
10 |
9
|
a1i |
|- ( ph -> 2 =/= 0 ) |
11 |
7 2 10 3
|
mulne0d |
|- ( ph -> ( 2 x. A ) =/= 0 ) |
12 |
4 8 11
|
divcld |
|- ( ph -> ( B / ( 2 x. A ) ) e. CC ) |
13 |
1 12
|
addcld |
|- ( ph -> ( X + ( B / ( 2 x. A ) ) ) e. CC ) |
14 |
8 13
|
sqmuld |
|- ( ph -> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( ( 2 x. A ) ^ 2 ) x. ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) ) ) |
15 |
1 12
|
binom2d |
|- ( ph -> ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) ) |
16 |
1
|
sqcld |
|- ( ph -> ( X ^ 2 ) e. CC ) |
17 |
2 16
|
mulcld |
|- ( ph -> ( A x. ( X ^ 2 ) ) e. CC ) |
18 |
4 1
|
mulcld |
|- ( ph -> ( B x. X ) e. CC ) |
19 |
17 18 2 3
|
divdird |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) = ( ( ( A x. ( X ^ 2 ) ) / A ) + ( ( B x. X ) / A ) ) ) |
20 |
16 2 3
|
divcan3d |
|- ( ph -> ( ( A x. ( X ^ 2 ) ) / A ) = ( X ^ 2 ) ) |
21 |
4 1 2 3
|
div23d |
|- ( ph -> ( ( B x. X ) / A ) = ( ( B / A ) x. X ) ) |
22 |
20 21
|
oveq12d |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) / A ) + ( ( B x. X ) / A ) ) = ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) ) |
23 |
19 22
|
eqtr2d |
|- ( ph -> ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) ) |
24 |
4 2 3
|
divcld |
|- ( ph -> ( B / A ) e. CC ) |
25 |
24 1
|
mulcomd |
|- ( ph -> ( ( B / A ) x. X ) = ( X x. ( B / A ) ) ) |
26 |
1 24
|
mulcld |
|- ( ph -> ( X x. ( B / A ) ) e. CC ) |
27 |
26 7 10
|
divcan2d |
|- ( ph -> ( 2 x. ( ( X x. ( B / A ) ) / 2 ) ) = ( X x. ( B / A ) ) ) |
28 |
1 24 7 10
|
divassd |
|- ( ph -> ( ( X x. ( B / A ) ) / 2 ) = ( X x. ( ( B / A ) / 2 ) ) ) |
29 |
4 2 7 3 10
|
divdiv1d |
|- ( ph -> ( ( B / A ) / 2 ) = ( B / ( A x. 2 ) ) ) |
30 |
2 7
|
mulcomd |
|- ( ph -> ( A x. 2 ) = ( 2 x. A ) ) |
31 |
30
|
oveq2d |
|- ( ph -> ( B / ( A x. 2 ) ) = ( B / ( 2 x. A ) ) ) |
32 |
29 31
|
eqtrd |
|- ( ph -> ( ( B / A ) / 2 ) = ( B / ( 2 x. A ) ) ) |
33 |
32
|
oveq2d |
|- ( ph -> ( X x. ( ( B / A ) / 2 ) ) = ( X x. ( B / ( 2 x. A ) ) ) ) |
34 |
28 33
|
eqtrd |
|- ( ph -> ( ( X x. ( B / A ) ) / 2 ) = ( X x. ( B / ( 2 x. A ) ) ) ) |
35 |
34
|
oveq2d |
|- ( ph -> ( 2 x. ( ( X x. ( B / A ) ) / 2 ) ) = ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) |
36 |
25 27 35
|
3eqtr2d |
|- ( ph -> ( ( B / A ) x. X ) = ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) |
37 |
36
|
oveq2d |
|- ( ph -> ( ( X ^ 2 ) + ( ( B / A ) x. X ) ) = ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) ) |
38 |
17 18
|
addcld |
|- ( ph -> ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) e. CC ) |
39 |
17 18 5
|
addassd |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) = ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) ) |
40 |
38 5 39
|
mvlraddd |
|- ( ph -> ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) ) |
41 |
6
|
oveq1d |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = ( 0 - C ) ) |
42 |
|
df-neg |
|- -u C = ( 0 - C ) |
43 |
41 42
|
eqtr4di |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) - C ) = -u C ) |
44 |
40 43
|
eqtrd |
|- ( ph -> ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) = -u C ) |
45 |
44
|
oveq1d |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) / A ) = ( -u C / A ) ) |
46 |
23 37 45
|
3eqtr3d |
|- ( ph -> ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) = ( -u C / A ) ) |
47 |
46
|
oveq1d |
|- ( ph -> ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( B / ( 2 x. A ) ) ) ) ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) ) |
48 |
15 47
|
eqtrd |
|- ( ph -> ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) ) |
49 |
5
|
negcld |
|- ( ph -> -u C e. CC ) |
50 |
49 2 3
|
divcld |
|- ( ph -> ( -u C / A ) e. CC ) |
51 |
12
|
sqcld |
|- ( ph -> ( ( B / ( 2 x. A ) ) ^ 2 ) e. CC ) |
52 |
50 51
|
addcomd |
|- ( ph -> ( ( -u C / A ) + ( ( B / ( 2 x. A ) ) ^ 2 ) ) = ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) ) |
53 |
4 8 11
|
sqdivd |
|- ( ph -> ( ( B / ( 2 x. A ) ) ^ 2 ) = ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) ) |
54 |
|
4cn |
|- 4 e. CC |
55 |
54
|
a1i |
|- ( ph -> 4 e. CC ) |
56 |
55 2
|
mulcld |
|- ( ph -> ( 4 x. A ) e. CC ) |
57 |
|
4ne0 |
|- 4 =/= 0 |
58 |
57
|
a1i |
|- ( ph -> 4 =/= 0 ) |
59 |
55 2 58 3
|
mulne0d |
|- ( ph -> ( 4 x. A ) =/= 0 ) |
60 |
56 56 49 2 59 3
|
divmuldivd |
|- ( ph -> ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) = ( ( ( 4 x. A ) x. -u C ) / ( ( 4 x. A ) x. A ) ) ) |
61 |
56 59
|
dividd |
|- ( ph -> ( ( 4 x. A ) / ( 4 x. A ) ) = 1 ) |
62 |
61
|
eqcomd |
|- ( ph -> 1 = ( ( 4 x. A ) / ( 4 x. A ) ) ) |
63 |
62
|
oveq1d |
|- ( ph -> ( 1 x. ( -u C / A ) ) = ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) ) |
64 |
50
|
mullidd |
|- ( ph -> ( 1 x. ( -u C / A ) ) = ( -u C / A ) ) |
65 |
63 64
|
eqtr3d |
|- ( ph -> ( ( ( 4 x. A ) / ( 4 x. A ) ) x. ( -u C / A ) ) = ( -u C / A ) ) |
66 |
5
|
mulm1d |
|- ( ph -> ( -u 1 x. C ) = -u C ) |
67 |
66
|
eqcomd |
|- ( ph -> -u C = ( -u 1 x. C ) ) |
68 |
67
|
oveq2d |
|- ( ph -> ( ( 4 x. A ) x. -u C ) = ( ( 4 x. A ) x. ( -u 1 x. C ) ) ) |
69 |
|
neg1cn |
|- -u 1 e. CC |
70 |
69
|
a1i |
|- ( ph -> -u 1 e. CC ) |
71 |
56 70 5
|
mulassd |
|- ( ph -> ( ( ( 4 x. A ) x. -u 1 ) x. C ) = ( ( 4 x. A ) x. ( -u 1 x. C ) ) ) |
72 |
68 71
|
eqtr4d |
|- ( ph -> ( ( 4 x. A ) x. -u C ) = ( ( ( 4 x. A ) x. -u 1 ) x. C ) ) |
73 |
56 70
|
mulcomd |
|- ( ph -> ( ( 4 x. A ) x. -u 1 ) = ( -u 1 x. ( 4 x. A ) ) ) |
74 |
73
|
oveq1d |
|- ( ph -> ( ( ( 4 x. A ) x. -u 1 ) x. C ) = ( ( -u 1 x. ( 4 x. A ) ) x. C ) ) |
75 |
70 56 5
|
mulassd |
|- ( ph -> ( ( -u 1 x. ( 4 x. A ) ) x. C ) = ( -u 1 x. ( ( 4 x. A ) x. C ) ) ) |
76 |
72 74 75
|
3eqtrd |
|- ( ph -> ( ( 4 x. A ) x. -u C ) = ( -u 1 x. ( ( 4 x. A ) x. C ) ) ) |
77 |
55 2 5
|
mulassd |
|- ( ph -> ( ( 4 x. A ) x. C ) = ( 4 x. ( A x. C ) ) ) |
78 |
77
|
oveq2d |
|- ( ph -> ( -u 1 x. ( ( 4 x. A ) x. C ) ) = ( -u 1 x. ( 4 x. ( A x. C ) ) ) ) |
79 |
2 5
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
80 |
55 79
|
mulcld |
|- ( ph -> ( 4 x. ( A x. C ) ) e. CC ) |
81 |
80
|
mulm1d |
|- ( ph -> ( -u 1 x. ( 4 x. ( A x. C ) ) ) = -u ( 4 x. ( A x. C ) ) ) |
82 |
76 78 81
|
3eqtrd |
|- ( ph -> ( ( 4 x. A ) x. -u C ) = -u ( 4 x. ( A x. C ) ) ) |
83 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
84 |
83
|
a1i |
|- ( ph -> ( 2 x. 2 ) = 4 ) |
85 |
84
|
eqcomd |
|- ( ph -> 4 = ( 2 x. 2 ) ) |
86 |
85
|
oveq1d |
|- ( ph -> ( 4 x. A ) = ( ( 2 x. 2 ) x. A ) ) |
87 |
86
|
oveq1d |
|- ( ph -> ( ( 4 x. A ) x. A ) = ( ( ( 2 x. 2 ) x. A ) x. A ) ) |
88 |
7 7 2
|
mulassd |
|- ( ph -> ( ( 2 x. 2 ) x. A ) = ( 2 x. ( 2 x. A ) ) ) |
89 |
88
|
oveq1d |
|- ( ph -> ( ( ( 2 x. 2 ) x. A ) x. A ) = ( ( 2 x. ( 2 x. A ) ) x. A ) ) |
90 |
87 89
|
eqtrd |
|- ( ph -> ( ( 4 x. A ) x. A ) = ( ( 2 x. ( 2 x. A ) ) x. A ) ) |
91 |
7 8
|
mulcomd |
|- ( ph -> ( 2 x. ( 2 x. A ) ) = ( ( 2 x. A ) x. 2 ) ) |
92 |
91
|
oveq1d |
|- ( ph -> ( ( 2 x. ( 2 x. A ) ) x. A ) = ( ( ( 2 x. A ) x. 2 ) x. A ) ) |
93 |
8 7 2
|
mulassd |
|- ( ph -> ( ( ( 2 x. A ) x. 2 ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) ) ) |
94 |
90 92 93
|
3eqtrd |
|- ( ph -> ( ( 4 x. A ) x. A ) = ( ( 2 x. A ) x. ( 2 x. A ) ) ) |
95 |
8
|
sqvald |
|- ( ph -> ( ( 2 x. A ) ^ 2 ) = ( ( 2 x. A ) x. ( 2 x. A ) ) ) |
96 |
94 95
|
eqtr4d |
|- ( ph -> ( ( 4 x. A ) x. A ) = ( ( 2 x. A ) ^ 2 ) ) |
97 |
82 96
|
oveq12d |
|- ( ph -> ( ( ( 4 x. A ) x. -u C ) / ( ( 4 x. A ) x. A ) ) = ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) ) |
98 |
60 65 97
|
3eqtr3d |
|- ( ph -> ( -u C / A ) = ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) ) |
99 |
53 98
|
oveq12d |
|- ( ph -> ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) = ( ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) + ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) ) ) |
100 |
4
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
101 |
80
|
negcld |
|- ( ph -> -u ( 4 x. ( A x. C ) ) e. CC ) |
102 |
8
|
sqcld |
|- ( ph -> ( ( 2 x. A ) ^ 2 ) e. CC ) |
103 |
8 8 11 11
|
mulne0d |
|- ( ph -> ( ( 2 x. A ) x. ( 2 x. A ) ) =/= 0 ) |
104 |
95 103
|
eqnetrd |
|- ( ph -> ( ( 2 x. A ) ^ 2 ) =/= 0 ) |
105 |
100 101 102 104
|
divdird |
|- ( ph -> ( ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( ( B ^ 2 ) / ( ( 2 x. A ) ^ 2 ) ) + ( -u ( 4 x. ( A x. C ) ) / ( ( 2 x. A ) ^ 2 ) ) ) ) |
106 |
100 80
|
negsubd |
|- ( ph -> ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
107 |
106
|
oveq1d |
|- ( ph -> ( ( ( B ^ 2 ) + -u ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) |
108 |
99 105 107
|
3eqtr2d |
|- ( ph -> ( ( ( B / ( 2 x. A ) ) ^ 2 ) + ( -u C / A ) ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) |
109 |
48 52 108
|
3eqtrd |
|- ( ph -> ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) = ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) |
110 |
109
|
oveq2d |
|- ( ph -> ( ( ( 2 x. A ) ^ 2 ) x. ( ( X + ( B / ( 2 x. A ) ) ) ^ 2 ) ) = ( ( ( 2 x. A ) ^ 2 ) x. ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) ) |
111 |
100 80
|
subcld |
|- ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) |
112 |
111 102 104
|
divcan2d |
|- ( ph -> ( ( ( 2 x. A ) ^ 2 ) x. ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) / ( ( 2 x. A ) ^ 2 ) ) ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
113 |
14 110 112
|
3eqtrd |
|- ( ph -> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
114 |
8 13
|
mulcld |
|- ( ph -> ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC ) |
115 |
|
eqsqrtor |
|- ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) e. CC /\ ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) -> ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <-> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) ) ) |
116 |
114 111 115
|
syl2anc |
|- ( ph -> ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <-> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) ) ) |
117 |
113 116
|
mpbid |
|- ( ph -> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) ) |
118 |
111
|
sqrtcld |
|- ( ph -> ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC ) |
119 |
8 13 118 11
|
rdiv |
|- ( ph -> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) ) |
120 |
118 8 11
|
divcld |
|- ( ph -> ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) e. CC ) |
121 |
1 12 120
|
addlsub |
|- ( ph -> ( ( X + ( B / ( 2 x. A ) ) ) = ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) <-> X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) ) |
122 |
4 8 11
|
divnegd |
|- ( ph -> -u ( B / ( 2 x. A ) ) = ( -u B / ( 2 x. A ) ) ) |
123 |
122
|
oveq2d |
|- ( ph -> ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) ) |
124 |
120 12
|
negsubd |
|- ( ph -> ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) |
125 |
4
|
negcld |
|- ( ph -> -u B e. CC ) |
126 |
125 8 11
|
divcld |
|- ( ph -> ( -u B / ( 2 x. A ) ) e. CC ) |
127 |
120 126
|
addcomd |
|- ( ph -> ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) ) |
128 |
123 124 127
|
3eqtr3d |
|- ( ph -> ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) ) |
129 |
125 118 8 11
|
divdird |
|- ( ph -> ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) ) |
130 |
128 129
|
eqtr4d |
|- ( ph -> ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) |
131 |
130
|
eqeq2d |
|- ( ph -> ( X = ( ( ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) <-> X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) ) |
132 |
119 121 131
|
3bitrd |
|- ( ph -> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) ) |
133 |
118
|
negcld |
|- ( ph -> -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) e. CC ) |
134 |
8 13 133 11
|
rdiv |
|- ( ph -> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) ) |
135 |
133 8 11
|
divcld |
|- ( ph -> ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) e. CC ) |
136 |
1 12 135
|
addlsub |
|- ( ph -> ( ( X + ( B / ( 2 x. A ) ) ) = ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) <-> X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) ) |
137 |
122
|
oveq2d |
|- ( ph -> ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) ) |
138 |
135 12
|
negsubd |
|- ( ph -> ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + -u ( B / ( 2 x. A ) ) ) = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) ) |
139 |
135 126
|
addcomd |
|- ( ph -> ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) + ( -u B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) ) |
140 |
137 138 139
|
3eqtr3d |
|- ( ph -> ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) ) |
141 |
125 133 8 11
|
divdird |
|- ( ph -> ( ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B / ( 2 x. A ) ) + ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) ) ) |
142 |
125 118
|
negsubd |
|- ( ph -> ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) = ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) ) |
143 |
142
|
oveq1d |
|- ( ph -> ( ( -u B + -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) |
144 |
140 141 143
|
3eqtr2d |
|- ( ph -> ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) |
145 |
144
|
eqeq2d |
|- ( ph -> ( X = ( ( -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) / ( 2 x. A ) ) - ( B / ( 2 x. A ) ) ) <-> X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) ) |
146 |
134 136 145
|
3bitrd |
|- ( ph -> ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) <-> X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) ) |
147 |
132 146
|
orbi12d |
|- ( ph -> ( ( ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) \/ ( ( 2 x. A ) x. ( X + ( B / ( 2 x. A ) ) ) ) = -u ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) <-> ( X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) ) ) |
148 |
117 147
|
mpbid |
|- ( ph -> ( X = ( ( -u B + ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) / ( 2 x. A ) ) ) ) |