Metamath Proof Explorer


Theorem constrelextdg2

Description: If the N -th step ( CN ) of the construction of constuctible numbers is included in a subfield F of the complex numbers, then any element X of the next step ( Csuc N ) is either in F or in a quadratic extension of F . (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrelextdg2.k K = fld 𝑠 F
constrelextdg2.l L = fld 𝑠 fld fldGen F X
constrelextdg2.f φ F SubDRing fld
constrelextdg2.n φ N On
constrelextdg2.1 φ C N F
constrelextdg2.x φ X C suc N
Assertion constrelextdg2 φ X F L .:. K = 2

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrelextdg2.k K = fld 𝑠 F
3 constrelextdg2.l L = fld 𝑠 fld fldGen F X
4 constrelextdg2.f φ F SubDRing fld
5 constrelextdg2.n φ N On
6 constrelextdg2.1 φ C N F
7 constrelextdg2.x φ X C suc N
8 cnfldbas = Base fld
9 8 sdrgss F SubDRing fld F
10 4 9 syl φ F
11 10 ad7antr φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 F
12 6 ad7antr φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 C N F
13 simp-7r φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a C N
14 12 13 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a F
15 simp-6r φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b C N
16 12 15 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b F
17 simp-5r φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 c C N
18 12 17 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 c F
19 simp-4r φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 d C N
20 12 19 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 d F
21 simpllr φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 t
22 simplr φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 r
23 simpr1 φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X = a + t b a
24 simpr2 φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X = c + r d c
25 simpr3 φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c 0
26 eqid a + a c d c a c d c b a d c b a d c b a = a + a c d c a c d c b a d c b a d c b a
27 11 14 16 18 20 21 22 23 24 25 26 constrrtll φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X = a + a c d c a c d c b a d c b a d c b a
28 cnfldadd + = + fld
29 sdrgsubrg F SubDRing fld F SubRing fld
30 subrgsubg F SubRing fld F SubGrp fld
31 4 29 30 3syl φ F SubGrp fld
32 31 ad7antr φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 F SubGrp fld
33 cnfldmul × = fld
34 4 29 syl φ F SubRing fld
35 34 ad7antr φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 F SubRing fld
36 cnflddiv ÷ = / r fld
37 cnfld0 0 = 0 fld
38 4 ad7antr φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 F SubDRing fld
39 cnfldsub = - fld
40 39 32 14 18 subgsubcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a c F
41 5 ad7antr φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 N On
42 1 41 19 constrconj φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 d C N
43 12 42 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 d F
44 1 41 17 constrconj φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 c C N
45 12 44 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 c F
46 39 32 43 45 subgsubcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 d c F
47 33 35 40 46 subrgmcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a c d c F
48 1 41 13 constrconj φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a C N
49 12 48 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a F
50 39 32 49 45 subgsubcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a c F
51 39 32 20 18 subgsubcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 d c F
52 33 35 50 51 subrgmcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a c d c F
53 39 32 47 52 subgsubcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a c d c a c d c F
54 1 41 15 constrconj φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b C N
55 12 54 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b F
56 39 32 55 49 subgsubcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a F
57 33 35 56 51 subrgmcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c F
58 39 32 16 14 subgsubcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a F
59 33 35 58 46 subrgmcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c F
60 39 32 57 59 subgsubcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c b a d c F
61 11 16 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b
62 11 14 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a
63 61 62 cjsubd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a = b a
64 63 oveq1d φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c = b a d c
65 11 58 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a
66 65 cjcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a
67 11 51 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 d c
68 66 67 cjmuld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c = b a d c
69 65 cjcjd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a = b a
70 11 20 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 d
71 11 18 sseldd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 c
72 70 71 cjsubd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 d c = d c
73 69 72 oveq12d φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c = b a d c
74 68 73 eqtrd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c = b a d c
75 64 74 oveq12d φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c b a d c = b a d c b a d c
76 66 67 mulcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c
77 imval2 b a d c b a d c = b a d c b a d c 2 i
78 76 77 syl φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c = b a d c b a d c 2 i
79 78 neeq1d φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c 0 b a d c b a d c 2 i 0
80 25 79 mpbid φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c b a d c 2 i 0
81 76 cjcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c
82 76 81 subcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c b a d c
83 2cnd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 2
84 ax-icn i
85 84 a1i φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 i
86 83 85 mulcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 2 i
87 2cn 2
88 2ne0 2 0
89 ine0 i 0
90 87 84 88 89 mulne0i 2 i 0
91 90 a1i φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 2 i 0
92 82 86 91 divne0bd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c b a d c 0 b a d c b a d c 2 i 0
93 80 92 mpbird φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c b a d c 0
94 75 93 eqnetrrd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 b a d c b a d c 0
95 36 37 38 53 60 94 sdrgdvcl φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a c d c a c d c b a d c b a d c F
96 33 35 95 58 subrgmcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a c d c a c d c b a d c b a d c b a F
97 28 32 14 96 subgcld φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a + a c d c a c d c b a d c b a d c b a F
98 27 97 eqeltrd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X F
99 98 orcd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X F L .:. K = 2
100 99 r19.29an φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X F L .:. K = 2
101 100 r19.29an φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X F L .:. K = 2
102 101 r19.29an φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X F L .:. K = 2
103 102 r19.29an φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X F L .:. K = 2
104 103 r19.29an φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X F L .:. K = 2
105 104 r19.29an φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 X F L .:. K = 2
106 1 5 constrsscn φ C N
107 106 ad8antr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b C N
108 simp-8r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b a C N
109 simp-7r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b b C N
110 simp-6r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b c C N
111 simp-5r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b e C N
112 simp-4r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b f C N
113 simpllr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b t
114 simplrl φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b X = a + t b a
115 simplrr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b X c = e f
116 simpr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b a = b
117 107 108 109 110 111 112 113 114 115 116 constrrtlc2 φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b X = a
118 6 ad8antr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b C N F
119 118 108 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b a F
120 117 119 eqeltrd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b X F
121 120 orcd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b X F L .:. K = 2
122 eqid Poly 1 K = Poly 1 K
123 eqid mulGrp fld = mulGrp fld
124 cnfldfld fld Field
125 124 a1i φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b fld Field
126 4 ad8antr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b F SubDRing fld
127 eqid C N = C N
128 1 5 127 constrsuc φ X C suc N X a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a C N b C N c C N e C N f C N t X = a + t b a X c = e f a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f
129 7 128 mpbid φ X a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a C N b C N c C N e C N f C N t X = a + t b a X c = e f a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f
130 129 simpld φ X
131 130 ad8antr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b X
132 31 ad8antr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b F SubGrp fld
133 6 ad8antr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b C N F
134 5 ad8antr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b N On
135 simp-8r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a C N
136 1 134 135 constrconj φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a C N
137 133 136 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a F
138 126 29 syl φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b F SubRing fld
139 133 135 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a F
140 simp-7r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b C N
141 1 134 140 constrconj φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b C N
142 133 141 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b F
143 39 132 142 137 subgsubcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b a F
144 133 140 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b F
145 39 132 144 139 subgsubcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b a F
146 106 ad8antr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b C N
147 146 140 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b
148 146 135 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a
149 simpr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a b
150 149 necomd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b a
151 147 148 150 subne0d φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b a 0
152 36 37 126 143 145 151 sdrgdvcl φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b a b a F
153 33 138 139 152 subrgmcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a b a b a F
154 39 132 137 153 subgsubcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a a b a b a F
155 simp-6r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b c C N
156 1 134 155 constrconj φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b c C N
157 133 156 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b c F
158 39 132 154 157 subgsubcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a - a b a b a - c F
159 133 155 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b c F
160 33 138 159 152 subrgmcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b c b a b a F
161 39 132 158 160 subgsubcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a a b a b a - c - c b a b a F
162 simp-5r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b e C N
163 simp-4r φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b f C N
164 simpllr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b t
165 simplrl φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b X = a + t b a
166 simplrr φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b X c = e f
167 eqid b a b a = b a b a
168 eqid a a b a b a - c - c b a b a b a b a = a a b a b a - c - c b a b a b a b a
169 eqid c a - a b a b a - c + e f e f b a b a = c a - a b a b a - c + e f e f b a b a
170 146 135 140 155 162 163 164 165 166 167 168 169 149 constrrtlc1 φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b X 2 + a a b a b a - c - c b a b a b a b a X + c a - a b a b a - c + e f e f b a b a = 0 b a b a 0
171 170 simprd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b b a b a 0
172 36 37 126 161 152 171 sdrgdvcl φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b a a b a b a - c - c b a b a b a b a F
173 df-neg c a - a b a b a - c + e f e f = 0 c a - a b a b a - c + e f e f
174 1 134 constr01 φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b 0 1 C N
175 37 fvexi 0 V
176 175 prid1 0 0 1
177 176 a1i φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b 0 0 1
178 174 177 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b 0 C N
179 133 178 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b 0 F
180 33 138 159 158 subrgmcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b c a - a b a b a - c F
181 133 162 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b e F
182 133 163 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b f F
183 39 132 181 182 subgsubcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b e f F
184 1 134 162 constrconj φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b e C N
185 133 184 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b e F
186 1 134 163 constrconj φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b f C N
187 133 186 sseldd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b f F
188 39 132 185 187 subgsubcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b e f F
189 33 138 183 188 subrgmcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b e f e f F
190 28 132 180 189 subgcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b c a - a b a b a - c + e f e f F
191 39 132 179 190 subgsubcld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b 0 c a - a b a b a - c + e f e f F
192 173 191 eqeltrid φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b c a - a b a b a - c + e f e f F
193 36 37 126 192 152 171 sdrgdvcl φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b c a - a b a b a - c + e f e f b a b a F
194 2nn0 2 0
195 194 a1i φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b 2 0
196 cnfldexp X 2 0 2 mulGrp fld X = X 2
197 131 195 196 syl2anc φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b 2 mulGrp fld X = X 2
198 197 oveq1d φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b 2 mulGrp fld X + a a b a b a - c - c b a b a b a b a X + c a - a b a b a - c + e f e f b a b a = X 2 + a a b a b a - c - c b a b a b a b a X + c a - a b a b a - c + e f e f b a b a
199 170 simpld φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b X 2 + a a b a b a - c - c b a b a b a b a X + c a - a b a b a - c + e f e f b a b a = 0
200 198 199 eqtrd φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b 2 mulGrp fld X + a a b a b a - c - c b a b a b a b a X + c a - a b a b a - c + e f e f b a b a = 0
201 2 3 37 122 8 33 28 123 125 126 131 172 193 200 rtelextdg2 φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a b X F L .:. K = 2
202 exmidne a = b a b
203 202 a1i φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f a = b a b
204 121 201 203 mpjaodan φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f X F L .:. K = 2
205 204 r19.29an φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f X F L .:. K = 2
206 205 r19.29an φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f X F L .:. K = 2
207 206 r19.29an φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f X F L .:. K = 2
208 207 r19.29an φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f X F L .:. K = 2
209 208 r19.29an φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f X F L .:. K = 2
210 209 r19.29an φ a C N b C N c C N e C N f C N t X = a + t b a X c = e f X F L .:. K = 2
211 124 a1i φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f fld Field
212 4 ad7antr φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f F SubDRing fld
213 130 ad7antr φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X
214 212 29 30 3syl φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f F SubGrp fld
215 212 29 syl φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f F SubRing fld
216 6 ad7antr φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f C N F
217 simpllr φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e C N
218 216 217 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e F
219 simplr φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f f C N
220 216 219 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f f F
221 39 214 218 220 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e f F
222 106 ad7antr φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f C N
223 222 217 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e
224 222 219 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f f
225 223 224 cjsubd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e f = e f
226 5 ad7antr φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f N On
227 1 226 217 constrconj φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e C N
228 216 227 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e F
229 1 226 219 constrconj φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f f C N
230 216 229 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f f F
231 39 214 228 230 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e f F
232 225 231 eqeltrd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e f F
233 33 215 221 232 subrgmcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e f e f F
234 simp-4r φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d C N
235 1 226 234 constrconj φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d C N
236 216 235 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d F
237 216 234 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d F
238 simp-7r φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a C N
239 216 238 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a F
240 28 214 237 239 subgcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d + a F
241 33 215 236 240 subrgmcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d d + a F
242 39 214 233 241 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e f e f d d + a F
243 simp-6r φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b C N
244 216 243 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b F
245 simp-5r φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f c C N
246 216 245 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f c F
247 39 214 244 246 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b c F
248 222 243 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b
249 222 245 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f c
250 248 249 cjsubd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b c = b c
251 1 226 243 constrconj φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b C N
252 216 251 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b F
253 1 226 245 constrconj φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f c C N
254 216 253 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f c F
255 39 214 252 254 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b c F
256 250 255 eqeltrd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b c F
257 33 215 247 256 subrgmcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b c b c F
258 1 226 238 constrconj φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a C N
259 216 258 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a F
260 33 215 259 240 subrgmcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a d + a F
261 39 214 257 260 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b c b c a d + a F
262 39 214 242 261 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e f e f - d d + a - b c b c a d + a F
263 39 214 236 259 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d a F
264 222 234 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d
265 222 238 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a
266 264 265 cjsubd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d a = d a
267 264 265 subcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d a
268 simpr1 φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a d
269 268 necomd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d a
270 264 265 269 subne0d φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d a 0
271 267 270 cjne0d φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d a 0
272 266 271 eqnetrrd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d a 0
273 36 37 212 262 263 272 sdrgdvcl φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e f e f - d d + a - b c b c a d + a d a F
274 df-neg a d a - b c b c d - d d a e f e f a d a = 0 a d a - b c b c d - d d a e f e f a d a
275 1 226 constr01 φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f 0 1 C N
276 176 a1i φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f 0 0 1
277 275 276 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f 0 C N
278 216 277 sseldd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f 0 F
279 33 215 237 239 subrgmcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d a F
280 33 215 259 279 subrgmcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a d a F
281 33 215 257 237 subrgmcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f b c b c d F
282 39 214 280 281 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a d a b c b c d F
283 33 215 236 279 subrgmcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d d a F
284 33 215 233 239 subrgmcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f e f e f a F
285 39 214 283 284 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f d d a e f e f a F
286 39 214 282 285 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a d a - b c b c d - d d a e f e f a F
287 36 37 212 286 263 272 sdrgdvcl φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a d a - b c b c d - d d a e f e f a d a F
288 39 214 278 287 subgsubcld φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f 0 a d a - b c b c d - d d a e f e f a d a F
289 274 288 eqeltrid φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f a d a - b c b c d - d d a e f e f a d a F
290 213 194 196 sylancl φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f 2 mulGrp fld X = X 2
291 290 oveq1d φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f 2 mulGrp fld X + e f e f - d d + a - b c b c a d + a d a X + a d a - b c b c d - d d a e f e f a d a = X 2 + e f e f - d d + a - b c b c a d + a d a X + a d a - b c b c d - d d a e f e f a d a
292 simpr2 φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X a = b c
293 simpr3 φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X d = e f
294 eqid b c b c = b c b c
295 eqid e f e f = e f e f
296 eqid e f e f - d d + a - b c b c a d + a d a = e f e f - d d + a - b c b c a d + a d a
297 eqid a d a - b c b c d - d d a e f e f a d a = a d a - b c b c d - d d a e f e f a d a
298 222 238 243 245 234 217 219 213 268 292 293 294 295 296 297 constrrtcc φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X 2 + e f e f - d d + a - b c b c a d + a d a X + a d a - b c b c d - d d a e f e f a d a = 0
299 291 298 eqtrd φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f 2 mulGrp fld X + e f e f - d d + a - b c b c a d + a d a X + a d a - b c b c d - d d a e f e f a d a = 0
300 2 3 37 122 8 33 28 123 211 212 213 273 289 299 rtelextdg2 φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X F L .:. K = 2
301 300 r19.29an φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X F L .:. K = 2
302 301 r19.29an φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X F L .:. K = 2
303 302 r19.29an φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X F L .:. K = 2
304 303 r19.29an φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X F L .:. K = 2
305 304 r19.29an φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X F L .:. K = 2
306 305 r19.29an φ a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f X F L .:. K = 2
307 129 simprd φ a C N b C N c C N d C N t r X = a + t b a X = c + r d c b a d c 0 a C N b C N c C N e C N f C N t X = a + t b a X c = e f a C N b C N c C N d C N e C N f C N a d X a = b c X d = e f
308 105 210 306 307 mpjao3dan φ X F L .:. K = 2