Step |
Hyp |
Ref |
Expression |
1 |
|
constr0.1 |
|
2 |
|
constrelextdg2.k |
|
3 |
|
constrelextdg2.l |
|
4 |
|
constrelextdg2.f |
|
5 |
|
constrelextdg2.n |
|
6 |
|
constrelextdg2.1 |
|
7 |
|
constrelextdg2.x |
|
8 |
|
cnfldbas |
|
9 |
8
|
sdrgss |
|
10 |
4 9
|
syl |
|
11 |
10
|
ad7antr |
|
12 |
6
|
ad7antr |
|
13 |
|
simp-7r |
|
14 |
12 13
|
sseldd |
|
15 |
|
simp-6r |
|
16 |
12 15
|
sseldd |
|
17 |
|
simp-5r |
|
18 |
12 17
|
sseldd |
|
19 |
|
simp-4r |
|
20 |
12 19
|
sseldd |
|
21 |
|
simpllr |
|
22 |
|
simplr |
|
23 |
|
simpr1 |
|
24 |
|
simpr2 |
|
25 |
|
simpr3 |
|
26 |
|
eqid |
|
27 |
11 14 16 18 20 21 22 23 24 25 26
|
constrrtll |
|
28 |
|
cnfldadd |
|
29 |
|
sdrgsubrg |
|
30 |
|
subrgsubg |
|
31 |
4 29 30
|
3syl |
|
32 |
31
|
ad7antr |
|
33 |
|
cnfldmul |
|
34 |
4 29
|
syl |
|
35 |
34
|
ad7antr |
|
36 |
|
cnflddiv |
|
37 |
|
cnfld0 |
|
38 |
4
|
ad7antr |
|
39 |
|
cnfldsub |
|
40 |
39 32 14 18
|
subgsubcld |
|
41 |
5
|
ad7antr |
|
42 |
1 41 19
|
constrconj |
|
43 |
12 42
|
sseldd |
|
44 |
1 41 17
|
constrconj |
|
45 |
12 44
|
sseldd |
|
46 |
39 32 43 45
|
subgsubcld |
|
47 |
33 35 40 46
|
subrgmcld |
|
48 |
1 41 13
|
constrconj |
|
49 |
12 48
|
sseldd |
|
50 |
39 32 49 45
|
subgsubcld |
|
51 |
39 32 20 18
|
subgsubcld |
|
52 |
33 35 50 51
|
subrgmcld |
|
53 |
39 32 47 52
|
subgsubcld |
|
54 |
1 41 15
|
constrconj |
|
55 |
12 54
|
sseldd |
|
56 |
39 32 55 49
|
subgsubcld |
|
57 |
33 35 56 51
|
subrgmcld |
|
58 |
39 32 16 14
|
subgsubcld |
|
59 |
33 35 58 46
|
subrgmcld |
|
60 |
39 32 57 59
|
subgsubcld |
|
61 |
11 16
|
sseldd |
|
62 |
11 14
|
sseldd |
|
63 |
61 62
|
cjsubd |
|
64 |
63
|
oveq1d |
|
65 |
11 58
|
sseldd |
|
66 |
65
|
cjcld |
|
67 |
11 51
|
sseldd |
|
68 |
66 67
|
cjmuld |
|
69 |
65
|
cjcjd |
|
70 |
11 20
|
sseldd |
|
71 |
11 18
|
sseldd |
|
72 |
70 71
|
cjsubd |
|
73 |
69 72
|
oveq12d |
|
74 |
68 73
|
eqtrd |
|
75 |
64 74
|
oveq12d |
|
76 |
66 67
|
mulcld |
|
77 |
|
imval2 |
|
78 |
76 77
|
syl |
|
79 |
78
|
neeq1d |
|
80 |
25 79
|
mpbid |
|
81 |
76
|
cjcld |
|
82 |
76 81
|
subcld |
|
83 |
|
2cnd |
|
84 |
|
ax-icn |
|
85 |
84
|
a1i |
|
86 |
83 85
|
mulcld |
|
87 |
|
2cn |
|
88 |
|
2ne0 |
|
89 |
|
ine0 |
|
90 |
87 84 88 89
|
mulne0i |
|
91 |
90
|
a1i |
|
92 |
82 86 91
|
divne0bd |
|
93 |
80 92
|
mpbird |
|
94 |
75 93
|
eqnetrrd |
|
95 |
36 37 38 53 60 94
|
sdrgdvcl |
|
96 |
33 35 95 58
|
subrgmcld |
|
97 |
28 32 14 96
|
subgcld |
|
98 |
27 97
|
eqeltrd |
|
99 |
98
|
orcd |
|
100 |
99
|
r19.29an |
|
101 |
100
|
r19.29an |
|
102 |
101
|
r19.29an |
|
103 |
102
|
r19.29an |
|
104 |
103
|
r19.29an |
|
105 |
104
|
r19.29an |
|
106 |
1 5
|
constrsscn |
|
107 |
106
|
ad8antr |
|
108 |
|
simp-8r |
|
109 |
|
simp-7r |
|
110 |
|
simp-6r |
|
111 |
|
simp-5r |
|
112 |
|
simp-4r |
|
113 |
|
simpllr |
|
114 |
|
simplrl |
|
115 |
|
simplrr |
|
116 |
|
simpr |
|
117 |
107 108 109 110 111 112 113 114 115 116
|
constrrtlc2 |
|
118 |
6
|
ad8antr |
|
119 |
118 108
|
sseldd |
|
120 |
117 119
|
eqeltrd |
|
121 |
120
|
orcd |
|
122 |
|
eqid |
|
123 |
|
eqid |
|
124 |
|
cnfldfld |
|
125 |
124
|
a1i |
|
126 |
4
|
ad8antr |
|
127 |
|
eqid |
|
128 |
1 5 127
|
constrsuc |
|
129 |
7 128
|
mpbid |
|
130 |
129
|
simpld |
|
131 |
130
|
ad8antr |
|
132 |
31
|
ad8antr |
|
133 |
6
|
ad8antr |
|
134 |
5
|
ad8antr |
|
135 |
|
simp-8r |
|
136 |
1 134 135
|
constrconj |
|
137 |
133 136
|
sseldd |
|
138 |
126 29
|
syl |
|
139 |
133 135
|
sseldd |
|
140 |
|
simp-7r |
|
141 |
1 134 140
|
constrconj |
|
142 |
133 141
|
sseldd |
|
143 |
39 132 142 137
|
subgsubcld |
|
144 |
133 140
|
sseldd |
|
145 |
39 132 144 139
|
subgsubcld |
|
146 |
106
|
ad8antr |
|
147 |
146 140
|
sseldd |
|
148 |
146 135
|
sseldd |
|
149 |
|
simpr |
|
150 |
149
|
necomd |
|
151 |
147 148 150
|
subne0d |
|
152 |
36 37 126 143 145 151
|
sdrgdvcl |
|
153 |
33 138 139 152
|
subrgmcld |
|
154 |
39 132 137 153
|
subgsubcld |
|
155 |
|
simp-6r |
|
156 |
1 134 155
|
constrconj |
|
157 |
133 156
|
sseldd |
|
158 |
39 132 154 157
|
subgsubcld |
|
159 |
133 155
|
sseldd |
|
160 |
33 138 159 152
|
subrgmcld |
|
161 |
39 132 158 160
|
subgsubcld |
|
162 |
|
simp-5r |
|
163 |
|
simp-4r |
|
164 |
|
simpllr |
|
165 |
|
simplrl |
|
166 |
|
simplrr |
|
167 |
|
eqid |
|
168 |
|
eqid |
|
169 |
|
eqid |
|
170 |
146 135 140 155 162 163 164 165 166 167 168 169 149
|
constrrtlc1 |
|
171 |
170
|
simprd |
|
172 |
36 37 126 161 152 171
|
sdrgdvcl |
|
173 |
|
df-neg |
|
174 |
1 134
|
constr01 |
|
175 |
37
|
fvexi |
|
176 |
175
|
prid1 |
|
177 |
176
|
a1i |
|
178 |
174 177
|
sseldd |
|
179 |
133 178
|
sseldd |
|
180 |
33 138 159 158
|
subrgmcld |
|
181 |
133 162
|
sseldd |
|
182 |
133 163
|
sseldd |
|
183 |
39 132 181 182
|
subgsubcld |
|
184 |
1 134 162
|
constrconj |
|
185 |
133 184
|
sseldd |
|
186 |
1 134 163
|
constrconj |
|
187 |
133 186
|
sseldd |
|
188 |
39 132 185 187
|
subgsubcld |
|
189 |
33 138 183 188
|
subrgmcld |
|
190 |
28 132 180 189
|
subgcld |
|
191 |
39 132 179 190
|
subgsubcld |
|
192 |
173 191
|
eqeltrid |
|
193 |
36 37 126 192 152 171
|
sdrgdvcl |
|
194 |
|
2nn0 |
|
195 |
194
|
a1i |
|
196 |
|
cnfldexp |
|
197 |
131 195 196
|
syl2anc |
|
198 |
197
|
oveq1d |
|
199 |
170
|
simpld |
|
200 |
198 199
|
eqtrd |
|
201 |
2 3 37 122 8 33 28 123 125 126 131 172 193 200
|
rtelextdg2 |
|
202 |
|
exmidne |
|
203 |
202
|
a1i |
|
204 |
121 201 203
|
mpjaodan |
|
205 |
204
|
r19.29an |
|
206 |
205
|
r19.29an |
|
207 |
206
|
r19.29an |
|
208 |
207
|
r19.29an |
|
209 |
208
|
r19.29an |
|
210 |
209
|
r19.29an |
|
211 |
124
|
a1i |
|
212 |
4
|
ad7antr |
|
213 |
130
|
ad7antr |
|
214 |
212 29 30
|
3syl |
|
215 |
212 29
|
syl |
|
216 |
6
|
ad7antr |
|
217 |
|
simpllr |
|
218 |
216 217
|
sseldd |
|
219 |
|
simplr |
|
220 |
216 219
|
sseldd |
|
221 |
39 214 218 220
|
subgsubcld |
|
222 |
106
|
ad7antr |
|
223 |
222 217
|
sseldd |
|
224 |
222 219
|
sseldd |
|
225 |
223 224
|
cjsubd |
|
226 |
5
|
ad7antr |
|
227 |
1 226 217
|
constrconj |
|
228 |
216 227
|
sseldd |
|
229 |
1 226 219
|
constrconj |
|
230 |
216 229
|
sseldd |
|
231 |
39 214 228 230
|
subgsubcld |
|
232 |
225 231
|
eqeltrd |
|
233 |
33 215 221 232
|
subrgmcld |
|
234 |
|
simp-4r |
|
235 |
1 226 234
|
constrconj |
|
236 |
216 235
|
sseldd |
|
237 |
216 234
|
sseldd |
|
238 |
|
simp-7r |
|
239 |
216 238
|
sseldd |
|
240 |
28 214 237 239
|
subgcld |
|
241 |
33 215 236 240
|
subrgmcld |
|
242 |
39 214 233 241
|
subgsubcld |
|
243 |
|
simp-6r |
|
244 |
216 243
|
sseldd |
|
245 |
|
simp-5r |
|
246 |
216 245
|
sseldd |
|
247 |
39 214 244 246
|
subgsubcld |
|
248 |
222 243
|
sseldd |
|
249 |
222 245
|
sseldd |
|
250 |
248 249
|
cjsubd |
|
251 |
1 226 243
|
constrconj |
|
252 |
216 251
|
sseldd |
|
253 |
1 226 245
|
constrconj |
|
254 |
216 253
|
sseldd |
|
255 |
39 214 252 254
|
subgsubcld |
|
256 |
250 255
|
eqeltrd |
|
257 |
33 215 247 256
|
subrgmcld |
|
258 |
1 226 238
|
constrconj |
|
259 |
216 258
|
sseldd |
|
260 |
33 215 259 240
|
subrgmcld |
|
261 |
39 214 257 260
|
subgsubcld |
|
262 |
39 214 242 261
|
subgsubcld |
|
263 |
39 214 236 259
|
subgsubcld |
|
264 |
222 234
|
sseldd |
|
265 |
222 238
|
sseldd |
|
266 |
264 265
|
cjsubd |
|
267 |
264 265
|
subcld |
|
268 |
|
simpr1 |
|
269 |
268
|
necomd |
|
270 |
264 265 269
|
subne0d |
|
271 |
267 270
|
cjne0d |
|
272 |
266 271
|
eqnetrrd |
|
273 |
36 37 212 262 263 272
|
sdrgdvcl |
|
274 |
|
df-neg |
|
275 |
1 226
|
constr01 |
|
276 |
176
|
a1i |
|
277 |
275 276
|
sseldd |
|
278 |
216 277
|
sseldd |
|
279 |
33 215 237 239
|
subrgmcld |
|
280 |
33 215 259 279
|
subrgmcld |
|
281 |
33 215 257 237
|
subrgmcld |
|
282 |
39 214 280 281
|
subgsubcld |
|
283 |
33 215 236 279
|
subrgmcld |
|
284 |
33 215 233 239
|
subrgmcld |
|
285 |
39 214 283 284
|
subgsubcld |
|
286 |
39 214 282 285
|
subgsubcld |
|
287 |
36 37 212 286 263 272
|
sdrgdvcl |
|
288 |
39 214 278 287
|
subgsubcld |
|
289 |
274 288
|
eqeltrid |
|
290 |
213 194 196
|
sylancl |
|
291 |
290
|
oveq1d |
|
292 |
|
simpr2 |
|
293 |
|
simpr3 |
|
294 |
|
eqid |
|
295 |
|
eqid |
|
296 |
|
eqid |
|
297 |
|
eqid |
|
298 |
222 238 243 245 234 217 219 213 268 292 293 294 295 296 297
|
constrrtcc |
|
299 |
291 298
|
eqtrd |
|
300 |
2 3 37 122 8 33 28 123 211 212 213 273 289 299
|
rtelextdg2 |
|
301 |
300
|
r19.29an |
|
302 |
301
|
r19.29an |
|
303 |
302
|
r19.29an |
|
304 |
303
|
r19.29an |
|
305 |
304
|
r19.29an |
|
306 |
305
|
r19.29an |
|
307 |
129
|
simprd |
|
308 |
105 210 306 307
|
mpjao3dan |
|