| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrelextdg2.k |
⊢ 𝐾 = ( ℂfld ↾s 𝐹 ) |
| 3 |
|
constrelextdg2.l |
⊢ 𝐿 = ( ℂfld ↾s ( ℂfld fldGen ( 𝐹 ∪ { 𝑋 } ) ) ) |
| 4 |
|
constrelextdg2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ ℂfld ) ) |
| 5 |
|
constrelextdg2.n |
⊢ ( 𝜑 → 𝑁 ∈ On ) |
| 6 |
|
constrelextdg2.1 |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) ⊆ 𝐹 ) |
| 7 |
|
constrelextdg2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 ‘ suc 𝑁 ) ) |
| 8 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 9 |
8
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ ℂfld ) → 𝐹 ⊆ ℂ ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ ℂ ) |
| 11 |
10
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝐹 ⊆ ℂ ) |
| 12 |
6
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝐶 ‘ 𝑁 ) ⊆ 𝐹 ) |
| 13 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 14 |
12 13
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ 𝐹 ) |
| 15 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 16 |
12 15
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ 𝐹 ) |
| 17 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 18 |
12 17
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ 𝐹 ) |
| 19 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 20 |
12 19
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ 𝐹 ) |
| 21 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑡 ∈ ℝ ) |
| 22 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑟 ∈ ℝ ) |
| 23 |
|
simpr1 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) |
| 24 |
|
simpr2 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ) |
| 25 |
|
simpr3 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) |
| 26 |
|
eqid |
⊢ ( 𝑎 + ( ( ( ( ( 𝑎 − 𝑐 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) − ( ( ( ∗ ‘ 𝑎 ) − ( ∗ ‘ 𝑐 ) ) · ( 𝑑 − 𝑐 ) ) ) / ( ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) · ( 𝑏 − 𝑎 ) ) ) = ( 𝑎 + ( ( ( ( ( 𝑎 − 𝑐 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) − ( ( ( ∗ ‘ 𝑎 ) − ( ∗ ‘ 𝑐 ) ) · ( 𝑑 − 𝑐 ) ) ) / ( ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) · ( 𝑏 − 𝑎 ) ) ) |
| 27 |
11 14 16 18 20 21 22 23 24 25 26
|
constrrtll |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑋 = ( 𝑎 + ( ( ( ( ( 𝑎 − 𝑐 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) − ( ( ( ∗ ‘ 𝑎 ) − ( ∗ ‘ 𝑐 ) ) · ( 𝑑 − 𝑐 ) ) ) / ( ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) · ( 𝑏 − 𝑎 ) ) ) ) |
| 28 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 29 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ ℂfld ) → 𝐹 ∈ ( SubRing ‘ ℂfld ) ) |
| 30 |
|
subrgsubg |
⊢ ( 𝐹 ∈ ( SubRing ‘ ℂfld ) → 𝐹 ∈ ( SubGrp ‘ ℂfld ) ) |
| 31 |
4 29 30
|
3syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubGrp ‘ ℂfld ) ) |
| 32 |
31
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝐹 ∈ ( SubGrp ‘ ℂfld ) ) |
| 33 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 34 |
4 29
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ ℂfld ) ) |
| 35 |
34
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝐹 ∈ ( SubRing ‘ ℂfld ) ) |
| 36 |
|
cnflddiv |
⊢ / = ( /r ‘ ℂfld ) |
| 37 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 38 |
4
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝐹 ∈ ( SubDRing ‘ ℂfld ) ) |
| 39 |
|
cnfldsub |
⊢ − = ( -g ‘ ℂfld ) |
| 40 |
39 32 14 18
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑎 − 𝑐 ) ∈ 𝐹 ) |
| 41 |
5
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑁 ∈ On ) |
| 42 |
1 41 19
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑑 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 43 |
12 42
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑑 ) ∈ 𝐹 ) |
| 44 |
1 41 17
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 45 |
12 44
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑐 ) ∈ 𝐹 ) |
| 46 |
39 32 43 45
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ∈ 𝐹 ) |
| 47 |
33 35 40 46
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( 𝑎 − 𝑐 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ∈ 𝐹 ) |
| 48 |
1 41 13
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 49 |
12 48
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑎 ) ∈ 𝐹 ) |
| 50 |
39 32 49 45
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑎 ) − ( ∗ ‘ 𝑐 ) ) ∈ 𝐹 ) |
| 51 |
39 32 20 18
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑑 − 𝑐 ) ∈ 𝐹 ) |
| 52 |
33 35 50 51
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ∗ ‘ 𝑎 ) − ( ∗ ‘ 𝑐 ) ) · ( 𝑑 − 𝑐 ) ) ∈ 𝐹 ) |
| 53 |
39 32 47 52
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( 𝑎 − 𝑐 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) − ( ( ( ∗ ‘ 𝑎 ) − ( ∗ ‘ 𝑐 ) ) · ( 𝑑 − 𝑐 ) ) ) ∈ 𝐹 ) |
| 54 |
1 41 15
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 55 |
12 54
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ 𝑏 ) ∈ 𝐹 ) |
| 56 |
39 32 55 49
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ∈ 𝐹 ) |
| 57 |
33 35 56 51
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ∈ 𝐹 ) |
| 58 |
39 32 16 14
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑏 − 𝑎 ) ∈ 𝐹 ) |
| 59 |
33 35 58 46
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ∈ 𝐹 ) |
| 60 |
39 32 57 59
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ∈ 𝐹 ) |
| 61 |
11 16
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑏 ∈ ℂ ) |
| 62 |
11 14
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑎 ∈ ℂ ) |
| 63 |
61 62
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ) |
| 64 |
63
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) = ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) |
| 65 |
11 58
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
| 66 |
65
|
cjcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ∈ ℂ ) |
| 67 |
11 51
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑑 − 𝑐 ) ∈ ℂ ) |
| 68 |
66 67
|
cjmuld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) ) |
| 69 |
65
|
cjcjd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑏 − 𝑎 ) ) |
| 70 |
11 20
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑑 ∈ ℂ ) |
| 71 |
11 18
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑐 ∈ ℂ ) |
| 72 |
70 71
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( 𝑑 − 𝑐 ) ) = ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) |
| 73 |
69 72
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( ∗ ‘ ( 𝑏 − 𝑎 ) ) ) · ( ∗ ‘ ( 𝑑 − 𝑐 ) ) ) = ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 74 |
68 73
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) |
| 75 |
64 74
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) = ( ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) |
| 76 |
66 67
|
mulcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ∈ ℂ ) |
| 77 |
|
imval2 |
⊢ ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ∈ ℂ → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) / ( 2 · i ) ) ) |
| 78 |
76 77
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) = ( ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) / ( 2 · i ) ) ) |
| 79 |
78
|
neeq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ↔ ( ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) / ( 2 · i ) ) ≠ 0 ) ) |
| 80 |
25 79
|
mpbid |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) / ( 2 · i ) ) ≠ 0 ) |
| 81 |
76
|
cjcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ∈ ℂ ) |
| 82 |
76 81
|
subcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) ∈ ℂ ) |
| 83 |
|
2cnd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 2 ∈ ℂ ) |
| 84 |
|
ax-icn |
⊢ i ∈ ℂ |
| 85 |
84
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → i ∈ ℂ ) |
| 86 |
83 85
|
mulcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 2 · i ) ∈ ℂ ) |
| 87 |
|
2cn |
⊢ 2 ∈ ℂ |
| 88 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 89 |
|
ine0 |
⊢ i ≠ 0 |
| 90 |
87 84 88 89
|
mulne0i |
⊢ ( 2 · i ) ≠ 0 |
| 91 |
90
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 2 · i ) ≠ 0 ) |
| 92 |
82 86 91
|
divne0bd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) ≠ 0 ↔ ( ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) / ( 2 · i ) ) ≠ 0 ) ) |
| 93 |
80 92
|
mpbird |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ∗ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ) ≠ 0 ) |
| 94 |
75 93
|
eqnetrrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ≠ 0 ) |
| 95 |
36 37 38 53 60 94
|
sdrgdvcl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ( 𝑎 − 𝑐 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) − ( ( ( ∗ ‘ 𝑎 ) − ( ∗ ‘ 𝑐 ) ) · ( 𝑑 − 𝑐 ) ) ) / ( ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) ∈ 𝐹 ) |
| 96 |
33 35 95 58
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( ( ( ( ( 𝑎 − 𝑐 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) − ( ( ( ∗ ‘ 𝑎 ) − ( ∗ ‘ 𝑐 ) ) · ( 𝑑 − 𝑐 ) ) ) / ( ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) · ( 𝑏 − 𝑎 ) ) ∈ 𝐹 ) |
| 97 |
28 32 14 96
|
subgcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑎 + ( ( ( ( ( 𝑎 − 𝑐 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) − ( ( ( ∗ ‘ 𝑎 ) − ( ∗ ‘ 𝑐 ) ) · ( 𝑑 − 𝑐 ) ) ) / ( ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) − ( ( 𝑏 − 𝑎 ) · ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑐 ) ) ) ) ) · ( 𝑏 − 𝑎 ) ) ) ∈ 𝐹 ) |
| 98 |
27 97
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → 𝑋 ∈ 𝐹 ) |
| 99 |
98
|
orcd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑟 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 100 |
99
|
r19.29an |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 101 |
100
|
r19.29an |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 102 |
101
|
r19.29an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 103 |
102
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 104 |
103
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 105 |
104
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 106 |
1 5
|
constrsscn |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑁 ) ⊆ ℂ ) |
| 107 |
106
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → ( 𝐶 ‘ 𝑁 ) ⊆ ℂ ) |
| 108 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 109 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 110 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 111 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 112 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 113 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑡 ∈ ℝ ) |
| 114 |
|
simplrl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) |
| 115 |
|
simplrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
| 116 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑎 = 𝑏 ) |
| 117 |
107 108 109 110 111 112 113 114 115 116
|
constrrtlc2 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑋 = 𝑎 ) |
| 118 |
6
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → ( 𝐶 ‘ 𝑁 ) ⊆ 𝐹 ) |
| 119 |
118 108
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑎 ∈ 𝐹 ) |
| 120 |
117 119
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → 𝑋 ∈ 𝐹 ) |
| 121 |
120
|
orcd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 = 𝑏 ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 122 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
| 123 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
| 124 |
|
cnfldfld |
⊢ ℂfld ∈ Field |
| 125 |
124
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ℂfld ∈ Field ) |
| 126 |
4
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝐹 ∈ ( SubDRing ‘ ℂfld ) ) |
| 127 |
|
eqid |
⊢ ( 𝐶 ‘ 𝑁 ) = ( 𝐶 ‘ 𝑁 ) |
| 128 |
1 5 127
|
constrsuc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐶 ‘ suc 𝑁 ) ↔ ( 𝑋 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) ) |
| 129 |
7 128
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) ) |
| 130 |
129
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 131 |
130
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑋 ∈ ℂ ) |
| 132 |
31
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝐹 ∈ ( SubGrp ‘ ℂfld ) ) |
| 133 |
6
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝐶 ‘ 𝑁 ) ⊆ 𝐹 ) |
| 134 |
5
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑁 ∈ On ) |
| 135 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 136 |
1 134 135
|
constrconj |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 137 |
133 136
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑎 ) ∈ 𝐹 ) |
| 138 |
126 29
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝐹 ∈ ( SubRing ‘ ℂfld ) ) |
| 139 |
133 135
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑎 ∈ 𝐹 ) |
| 140 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 141 |
1 134 140
|
constrconj |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 142 |
133 141
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑏 ) ∈ 𝐹 ) |
| 143 |
39 132 142 137
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) ∈ 𝐹 ) |
| 144 |
133 140
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑏 ∈ 𝐹 ) |
| 145 |
39 132 144 139
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑏 − 𝑎 ) ∈ 𝐹 ) |
| 146 |
106
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝐶 ‘ 𝑁 ) ⊆ ℂ ) |
| 147 |
146 140
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑏 ∈ ℂ ) |
| 148 |
146 135
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑎 ∈ ℂ ) |
| 149 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑎 ≠ 𝑏 ) |
| 150 |
149
|
necomd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑏 ≠ 𝑎 ) |
| 151 |
147 148 150
|
subne0d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑏 − 𝑎 ) ≠ 0 ) |
| 152 |
36 37 126 143 145 151
|
sdrgdvcl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ∈ 𝐹 ) |
| 153 |
33 138 139 152
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ∈ 𝐹 ) |
| 154 |
39 132 137 153
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) ∈ 𝐹 ) |
| 155 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 156 |
1 134 155
|
constrconj |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 157 |
133 156
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑐 ) ∈ 𝐹 ) |
| 158 |
39 132 154 157
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ∈ 𝐹 ) |
| 159 |
133 155
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑐 ∈ 𝐹 ) |
| 160 |
33 138 159 152
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ∈ 𝐹 ) |
| 161 |
39 132 158 160
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) − ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) ∈ 𝐹 ) |
| 162 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 163 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 164 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑡 ∈ ℝ ) |
| 165 |
|
simplrl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ) |
| 166 |
|
simplrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
| 167 |
|
eqid |
⊢ ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) = ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) |
| 168 |
|
eqid |
⊢ ( ( ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) − ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) = ( ( ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) − ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) |
| 169 |
|
eqid |
⊢ ( - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) = ( - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) |
| 170 |
146 135 140 155 162 163 164 165 166 167 168 169 149
|
constrrtlc1 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( ( 𝑋 ↑ 2 ) + ( ( ( ( ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) − ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) · 𝑋 ) + ( - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) ) = 0 ∧ ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ≠ 0 ) ) |
| 171 |
170
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ≠ 0 ) |
| 172 |
36 37 126 161 152 171
|
sdrgdvcl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) − ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ∈ 𝐹 ) |
| 173 |
|
df-neg |
⊢ - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) = ( 0 − ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) |
| 174 |
1 134
|
constr01 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑁 ) ) |
| 175 |
37
|
fvexi |
⊢ 0 ∈ V |
| 176 |
175
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
| 177 |
176
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 0 ∈ { 0 , 1 } ) |
| 178 |
174 177
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 0 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 179 |
133 178
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 0 ∈ 𝐹 ) |
| 180 |
33 138 159 158
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) ∈ 𝐹 ) |
| 181 |
133 162
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑒 ∈ 𝐹 ) |
| 182 |
133 163
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 𝑓 ∈ 𝐹 ) |
| 183 |
39 132 181 182
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑒 − 𝑓 ) ∈ 𝐹 ) |
| 184 |
1 134 162
|
constrconj |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑒 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 185 |
133 184
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑒 ) ∈ 𝐹 ) |
| 186 |
1 134 163
|
constrconj |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑓 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 187 |
133 186
|
sseldd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ∗ ‘ 𝑓 ) ∈ 𝐹 ) |
| 188 |
39 132 185 187
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ∈ 𝐹 ) |
| 189 |
33 138 183 188
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ∈ 𝐹 ) |
| 190 |
28 132 180 189
|
subgcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ∈ 𝐹 ) |
| 191 |
39 132 179 190
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 0 − ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ) ∈ 𝐹 ) |
| 192 |
173 191
|
eqeltrid |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) ∈ 𝐹 ) |
| 193 |
36 37 126 192 152 171
|
sdrgdvcl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ∈ 𝐹 ) |
| 194 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 195 |
194
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → 2 ∈ ℕ0 ) |
| 196 |
|
cnfldexp |
⊢ ( ( 𝑋 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( 2 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑋 ) = ( 𝑋 ↑ 2 ) ) |
| 197 |
131 195 196
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 2 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑋 ) = ( 𝑋 ↑ 2 ) ) |
| 198 |
197
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( 2 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑋 ) + ( ( ( ( ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) − ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) · 𝑋 ) + ( - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) ) = ( ( 𝑋 ↑ 2 ) + ( ( ( ( ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) − ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) · 𝑋 ) + ( - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) ) ) |
| 199 |
170
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( 𝑋 ↑ 2 ) + ( ( ( ( ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) − ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) · 𝑋 ) + ( - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) ) = 0 ) |
| 200 |
198 199
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( ( 2 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑋 ) + ( ( ( ( ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) − ( 𝑐 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) · 𝑋 ) + ( - ( ( 𝑐 · ( ( ( ∗ ‘ 𝑎 ) − ( 𝑎 · ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) − ( ∗ ‘ 𝑐 ) ) ) + ( ( 𝑒 − 𝑓 ) · ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) ) / ( ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) ) ) = 0 ) |
| 201 |
2 3 37 122 8 33 28 123 125 126 131 172 193 200
|
rtelextdg2 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 202 |
|
exmidne |
⊢ ( 𝑎 = 𝑏 ∨ 𝑎 ≠ 𝑏 ) |
| 203 |
202
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑎 = 𝑏 ∨ 𝑎 ≠ 𝑏 ) ) |
| 204 |
121 201 203
|
mpjaodan |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 205 |
204
|
r19.29an |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 206 |
205
|
r19.29an |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 207 |
206
|
r19.29an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 208 |
207
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 209 |
208
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 210 |
209
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 211 |
124
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ℂfld ∈ Field ) |
| 212 |
4
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝐹 ∈ ( SubDRing ‘ ℂfld ) ) |
| 213 |
130
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑋 ∈ ℂ ) |
| 214 |
212 29 30
|
3syl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝐹 ∈ ( SubGrp ‘ ℂfld ) ) |
| 215 |
212 29
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝐹 ∈ ( SubRing ‘ ℂfld ) ) |
| 216 |
6
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝐶 ‘ 𝑁 ) ⊆ 𝐹 ) |
| 217 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 218 |
216 217
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑒 ∈ 𝐹 ) |
| 219 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 220 |
216 219
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑓 ∈ 𝐹 ) |
| 221 |
39 214 218 220
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑒 − 𝑓 ) ∈ 𝐹 ) |
| 222 |
106
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝐶 ‘ 𝑁 ) ⊆ ℂ ) |
| 223 |
222 217
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑒 ∈ ℂ ) |
| 224 |
222 219
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑓 ∈ ℂ ) |
| 225 |
223 224
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑒 − 𝑓 ) ) = ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ) |
| 226 |
5
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑁 ∈ On ) |
| 227 |
1 226 217
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑒 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 228 |
216 227
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑒 ) ∈ 𝐹 ) |
| 229 |
1 226 219
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑓 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 230 |
216 229
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑓 ) ∈ 𝐹 ) |
| 231 |
39 214 228 230
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑒 ) − ( ∗ ‘ 𝑓 ) ) ∈ 𝐹 ) |
| 232 |
225 231
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ∈ 𝐹 ) |
| 233 |
33 215 221 232
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) ∈ 𝐹 ) |
| 234 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 235 |
1 226 234
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑑 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 236 |
216 235
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑑 ) ∈ 𝐹 ) |
| 237 |
216 234
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑑 ∈ 𝐹 ) |
| 238 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 239 |
216 238
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ 𝐹 ) |
| 240 |
28 214 237 239
|
subgcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑑 + 𝑎 ) ∈ 𝐹 ) |
| 241 |
33 215 236 240
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ∈ 𝐹 ) |
| 242 |
39 214 233 241
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) − ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ) ∈ 𝐹 ) |
| 243 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 244 |
216 243
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ 𝐹 ) |
| 245 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 246 |
216 245
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ 𝐹 ) |
| 247 |
39 214 244 246
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑏 − 𝑐 ) ∈ 𝐹 ) |
| 248 |
222 243
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑏 ∈ ℂ ) |
| 249 |
222 245
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑐 ∈ ℂ ) |
| 250 |
248 249
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑏 − 𝑐 ) ) = ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ) |
| 251 |
1 226 243
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑏 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 252 |
216 251
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑏 ) ∈ 𝐹 ) |
| 253 |
1 226 245
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑐 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 254 |
216 253
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑐 ) ∈ 𝐹 ) |
| 255 |
39 214 252 254
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑏 ) − ( ∗ ‘ 𝑐 ) ) ∈ 𝐹 ) |
| 256 |
250 255
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ∈ 𝐹 ) |
| 257 |
33 215 247 256
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) ∈ 𝐹 ) |
| 258 |
1 226 238
|
constrconj |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑎 ) ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 259 |
216 258
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ 𝑎 ) ∈ 𝐹 ) |
| 260 |
33 215 259 240
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ∈ 𝐹 ) |
| 261 |
39 214 257 260
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) − ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ) ∈ 𝐹 ) |
| 262 |
39 214 242 261
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) − ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) − ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ) ) ∈ 𝐹 ) |
| 263 |
39 214 236 259
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ∈ 𝐹 ) |
| 264 |
222 234
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑑 ∈ ℂ ) |
| 265 |
222 238
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ∈ ℂ ) |
| 266 |
264 265
|
cjsubd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑑 − 𝑎 ) ) = ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) |
| 267 |
264 265
|
subcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑑 − 𝑎 ) ∈ ℂ ) |
| 268 |
|
simpr1 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑎 ≠ 𝑑 ) |
| 269 |
268
|
necomd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 𝑑 ≠ 𝑎 ) |
| 270 |
264 265 269
|
subne0d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑑 − 𝑎 ) ≠ 0 ) |
| 271 |
267 270
|
cjne0d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ∗ ‘ ( 𝑑 − 𝑎 ) ) ≠ 0 ) |
| 272 |
266 271
|
eqnetrrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ≠ 0 ) |
| 273 |
36 37 212 262 263 272
|
sdrgdvcl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) − ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) − ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) ∈ 𝐹 ) |
| 274 |
|
df-neg |
⊢ - ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) = ( 0 − ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) ) |
| 275 |
1 226
|
constr01 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → { 0 , 1 } ⊆ ( 𝐶 ‘ 𝑁 ) ) |
| 276 |
176
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 0 ∈ { 0 , 1 } ) |
| 277 |
275 276
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 0 ∈ ( 𝐶 ‘ 𝑁 ) ) |
| 278 |
216 277
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → 0 ∈ 𝐹 ) |
| 279 |
33 215 237 239
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑑 · 𝑎 ) ∈ 𝐹 ) |
| 280 |
33 215 259 279
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) ∈ 𝐹 ) |
| 281 |
33 215 257 237
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ∈ 𝐹 ) |
| 282 |
39 214 280 281
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) ∈ 𝐹 ) |
| 283 |
33 215 236 279
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) ∈ 𝐹 ) |
| 284 |
33 215 233 239
|
subrgmcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ∈ 𝐹 ) |
| 285 |
39 214 283 284
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ∈ 𝐹 ) |
| 286 |
39 214 282 285
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) ∈ 𝐹 ) |
| 287 |
36 37 212 286 263 272
|
sdrgdvcl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) ∈ 𝐹 ) |
| 288 |
39 214 278 287
|
subgsubcld |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 0 − ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) ) ∈ 𝐹 ) |
| 289 |
274 288
|
eqeltrid |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → - ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) ∈ 𝐹 ) |
| 290 |
213 194 196
|
sylancl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 2 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑋 ) = ( 𝑋 ↑ 2 ) ) |
| 291 |
290
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( 2 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑋 ) + ( ( ( ( ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) − ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) − ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) · 𝑋 ) + - ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) = ( ( 𝑋 ↑ 2 ) + ( ( ( ( ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) − ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) − ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) · 𝑋 ) + - ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) ) |
| 292 |
|
simpr2 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ) |
| 293 |
|
simpr3 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) |
| 294 |
|
eqid |
⊢ ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) = ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) |
| 295 |
|
eqid |
⊢ ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) = ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) |
| 296 |
|
eqid |
⊢ ( ( ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) − ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) − ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) = ( ( ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) − ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) − ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) |
| 297 |
|
eqid |
⊢ - ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) = - ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) |
| 298 |
222 238 243 245 234 217 219 213 268 292 293 294 295 296 297
|
constrrtcc |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( 𝑋 ↑ 2 ) + ( ( ( ( ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) − ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) − ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) · 𝑋 ) + - ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) = 0 ) |
| 299 |
291 298
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( ( 2 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑋 ) + ( ( ( ( ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) − ( ( ∗ ‘ 𝑑 ) · ( 𝑑 + 𝑎 ) ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) − ( ( ∗ ‘ 𝑎 ) · ( 𝑑 + 𝑎 ) ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) · 𝑋 ) + - ( ( ( ( ( ∗ ‘ 𝑎 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑏 − 𝑐 ) · ( ∗ ‘ ( 𝑏 − 𝑐 ) ) ) · 𝑑 ) ) − ( ( ( ∗ ‘ 𝑑 ) · ( 𝑑 · 𝑎 ) ) − ( ( ( 𝑒 − 𝑓 ) · ( ∗ ‘ ( 𝑒 − 𝑓 ) ) ) · 𝑎 ) ) ) / ( ( ∗ ‘ 𝑑 ) − ( ∗ ‘ 𝑎 ) ) ) ) ) = 0 ) |
| 300 |
2 3 37 122 8 33 28 123 211 212 213 273 289 299
|
rtelextdg2 |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 301 |
300
|
r19.29an |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 302 |
301
|
r19.29an |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 303 |
302
|
r19.29an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 304 |
303
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 305 |
304
|
r19.29an |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ) ∧ ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 306 |
305
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |
| 307 |
129
|
simprd |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑏 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑑 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑒 ∈ ( 𝐶 ‘ 𝑁 ) ∃ 𝑓 ∈ ( 𝐶 ‘ 𝑁 ) ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑋 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑋 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) ) |
| 308 |
105 210 306 307
|
mpjao3dan |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐹 ∨ ( 𝐿 [:] 𝐾 ) = 2 ) ) |