Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | sdrgsubrg | ⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issdrg | ⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) ) | |
2 | 1 | simp2bi | ⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |