Description: Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sdrgid.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | sdrgid | ⊢ ( 𝑅 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdrgid.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | id | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ DivRing ) | |
| 3 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 4 | 1 | subrgid | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 5 | 3 4 | syl | ⊢ ( 𝑅 ∈ DivRing → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 | 1 | ressid | ⊢ ( 𝑅 ∈ DivRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 7 | 6 2 | eqeltrd | ⊢ ( 𝑅 ∈ DivRing → ( 𝑅 ↾s 𝐵 ) ∈ DivRing ) |
| 8 | issdrg | ⊢ ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐵 ) ∈ DivRing ) ) | |
| 9 | 2 5 7 8 | syl3anbrc | ⊢ ( 𝑅 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ) |