Description: Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sdrgid.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
Assertion | sdrgid | ⊢ ( 𝑅 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdrgid.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | id | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ DivRing ) | |
3 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
4 | 1 | subrgid | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
5 | 3 4 | syl | ⊢ ( 𝑅 ∈ DivRing → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
6 | 1 | ressid | ⊢ ( 𝑅 ∈ DivRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
7 | 6 2 | eqeltrd | ⊢ ( 𝑅 ∈ DivRing → ( 𝑅 ↾s 𝐵 ) ∈ DivRing ) |
8 | issdrg | ⊢ ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐵 ) ∈ DivRing ) ) | |
9 | 2 5 7 8 | syl3anbrc | ⊢ ( 𝑅 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ) |