Metamath Proof Explorer


Theorem sdrgid

Description: Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis sdrgid.1 𝐵 = ( Base ‘ 𝑅 )
Assertion sdrgid ( 𝑅 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 sdrgid.1 𝐵 = ( Base ‘ 𝑅 )
2 id ( 𝑅 ∈ DivRing → 𝑅 ∈ DivRing )
3 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
4 1 subrgid ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) )
5 3 4 syl ( 𝑅 ∈ DivRing → 𝐵 ∈ ( SubRing ‘ 𝑅 ) )
6 1 ressid ( 𝑅 ∈ DivRing → ( 𝑅s 𝐵 ) = 𝑅 )
7 6 2 eqeltrd ( 𝑅 ∈ DivRing → ( 𝑅s 𝐵 ) ∈ DivRing )
8 issdrg ( 𝐵 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐵 ) ∈ DivRing ) )
9 2 5 7 8 syl3anbrc ( 𝑅 ∈ DivRing → 𝐵 ∈ ( SubDRing ‘ 𝑅 ) )