Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sdrgid.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
Assertion | sdrgss | ⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdrgid.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | issdrg | ⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ) | |
3 | 1 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ 𝐵 ) |
4 | 3 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) → 𝑆 ⊆ 𝐵 ) |
5 | 2 4 | sylbi | ⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ⊆ 𝐵 ) |