Metamath Proof Explorer


Theorem sdrgss

Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis sdrgid.1 𝐵 = ( Base ‘ 𝑅 )
Assertion sdrgss ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆𝐵 )

Proof

Step Hyp Ref Expression
1 sdrgid.1 𝐵 = ( Base ‘ 𝑅 )
2 issdrg ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝑆 ) ∈ DivRing ) )
3 1 subrgss ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆𝐵 )
4 3 3ad2ant2 ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝑆 ) ∈ DivRing ) → 𝑆𝐵 )
5 2 4 sylbi ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆𝐵 )