Metamath Proof Explorer


Theorem sdrgss

Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis sdrgid.1 B = Base R
Assertion sdrgss S SubDRing R S B

Proof

Step Hyp Ref Expression
1 sdrgid.1 B = Base R
2 issdrg S SubDRing R R DivRing S SubRing R R 𝑠 S DivRing
3 1 subrgss S SubRing R S B
4 3 3ad2ant2 R DivRing S SubRing R R 𝑠 S DivRing S B
5 2 4 sylbi S SubDRing R S B