Metamath Proof Explorer


Theorem sdrgss

Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis sdrgid.1 B=BaseR
Assertion sdrgss SSubDRingRSB

Proof

Step Hyp Ref Expression
1 sdrgid.1 B=BaseR
2 issdrg SSubDRingRRDivRingSSubRingRR𝑠SDivRing
3 1 subrgss SSubRingRSB
4 3 3ad2ant2 RDivRingSSubRingRR𝑠SDivRingSB
5 2 4 sylbi SSubDRingRSB