Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sdrgid.1 | |- B = ( Base ` R ) |
|
Assertion | sdrgss | |- ( S e. ( SubDRing ` R ) -> S C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdrgid.1 | |- B = ( Base ` R ) |
|
2 | issdrg | |- ( S e. ( SubDRing ` R ) <-> ( R e. DivRing /\ S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) ) |
|
3 | 1 | subrgss | |- ( S e. ( SubRing ` R ) -> S C_ B ) |
4 | 3 | 3ad2ant2 | |- ( ( R e. DivRing /\ S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) -> S C_ B ) |
5 | 2 4 | sylbi | |- ( S e. ( SubDRing ` R ) -> S C_ B ) |