Step |
Hyp |
Ref |
Expression |
1 |
|
df-sdrg |
|- SubDRing = ( w e. DivRing |-> { s e. ( SubRing ` w ) | ( w |`s s ) e. DivRing } ) |
2 |
1
|
mptrcl |
|- ( S e. ( SubDRing ` R ) -> R e. DivRing ) |
3 |
|
fveq2 |
|- ( w = R -> ( SubRing ` w ) = ( SubRing ` R ) ) |
4 |
|
oveq1 |
|- ( w = R -> ( w |`s s ) = ( R |`s s ) ) |
5 |
4
|
eleq1d |
|- ( w = R -> ( ( w |`s s ) e. DivRing <-> ( R |`s s ) e. DivRing ) ) |
6 |
3 5
|
rabeqbidv |
|- ( w = R -> { s e. ( SubRing ` w ) | ( w |`s s ) e. DivRing } = { s e. ( SubRing ` R ) | ( R |`s s ) e. DivRing } ) |
7 |
|
fvex |
|- ( SubRing ` R ) e. _V |
8 |
7
|
rabex |
|- { s e. ( SubRing ` R ) | ( R |`s s ) e. DivRing } e. _V |
9 |
6 1 8
|
fvmpt |
|- ( R e. DivRing -> ( SubDRing ` R ) = { s e. ( SubRing ` R ) | ( R |`s s ) e. DivRing } ) |
10 |
9
|
eleq2d |
|- ( R e. DivRing -> ( S e. ( SubDRing ` R ) <-> S e. { s e. ( SubRing ` R ) | ( R |`s s ) e. DivRing } ) ) |
11 |
|
oveq2 |
|- ( s = S -> ( R |`s s ) = ( R |`s S ) ) |
12 |
11
|
eleq1d |
|- ( s = S -> ( ( R |`s s ) e. DivRing <-> ( R |`s S ) e. DivRing ) ) |
13 |
12
|
elrab |
|- ( S e. { s e. ( SubRing ` R ) | ( R |`s s ) e. DivRing } <-> ( S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) ) |
14 |
10 13
|
bitrdi |
|- ( R e. DivRing -> ( S e. ( SubDRing ` R ) <-> ( S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) ) ) |
15 |
2 14
|
biadanii |
|- ( S e. ( SubDRing ` R ) <-> ( R e. DivRing /\ ( S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) ) ) |
16 |
|
3anass |
|- ( ( R e. DivRing /\ S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) <-> ( R e. DivRing /\ ( S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) ) ) |
17 |
15 16
|
bitr4i |
|- ( S e. ( SubDRing ` R ) <-> ( R e. DivRing /\ S e. ( SubRing ` R ) /\ ( R |`s S ) e. DivRing ) ) |