Description: A sub-division-ring is a subset of a division ring's set which is a division ring under the induced operation. If the overring is commutative this is a field; no special consideration is made of the fields in the center of a skew field. (Contributed by Stefan O'Rear, 3-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-sdrg | |- SubDRing = ( w e. DivRing |-> { s e. ( SubRing ` w ) | ( w |`s s ) e. DivRing } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csdrg | |- SubDRing |
|
1 | vw | |- w |
|
2 | cdr | |- DivRing |
|
3 | vs | |- s |
|
4 | csubrg | |- SubRing |
|
5 | 1 | cv | |- w |
6 | 5 4 | cfv | |- ( SubRing ` w ) |
7 | cress | |- |`s |
|
8 | 3 | cv | |- s |
9 | 5 8 7 | co | |- ( w |`s s ) |
10 | 9 2 | wcel | |- ( w |`s s ) e. DivRing |
11 | 10 3 6 | crab | |- { s e. ( SubRing ` w ) | ( w |`s s ) e. DivRing } |
12 | 1 2 11 | cmpt | |- ( w e. DivRing |-> { s e. ( SubRing ` w ) | ( w |`s s ) e. DivRing } ) |
13 | 0 12 | wceq | |- SubDRing = ( w e. DivRing |-> { s e. ( SubRing ` w ) | ( w |`s s ) e. DivRing } ) |