Step |
Hyp |
Ref |
Expression |
1 |
|
sdrgid.1 |
|- B = ( Base ` R ) |
2 |
|
id |
|- ( R e. DivRing -> R e. DivRing ) |
3 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
4 |
1
|
subrgid |
|- ( R e. Ring -> B e. ( SubRing ` R ) ) |
5 |
3 4
|
syl |
|- ( R e. DivRing -> B e. ( SubRing ` R ) ) |
6 |
1
|
ressid |
|- ( R e. DivRing -> ( R |`s B ) = R ) |
7 |
6 2
|
eqeltrd |
|- ( R e. DivRing -> ( R |`s B ) e. DivRing ) |
8 |
|
issdrg |
|- ( B e. ( SubDRing ` R ) <-> ( R e. DivRing /\ B e. ( SubRing ` R ) /\ ( R |`s B ) e. DivRing ) ) |
9 |
2 5 7 8
|
syl3anbrc |
|- ( R e. DivRing -> B e. ( SubDRing ` R ) ) |