| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdrgid.1 |
|- B = ( Base ` R ) |
| 2 |
|
id |
|- ( R e. DivRing -> R e. DivRing ) |
| 3 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 4 |
1
|
subrgid |
|- ( R e. Ring -> B e. ( SubRing ` R ) ) |
| 5 |
3 4
|
syl |
|- ( R e. DivRing -> B e. ( SubRing ` R ) ) |
| 6 |
1
|
ressid |
|- ( R e. DivRing -> ( R |`s B ) = R ) |
| 7 |
6 2
|
eqeltrd |
|- ( R e. DivRing -> ( R |`s B ) e. DivRing ) |
| 8 |
|
issdrg |
|- ( B e. ( SubDRing ` R ) <-> ( R e. DivRing /\ B e. ( SubRing ` R ) /\ ( R |`s B ) e. DivRing ) ) |
| 9 |
2 5 7 8
|
syl3anbrc |
|- ( R e. DivRing -> B e. ( SubDRing ` R ) ) |