Metamath Proof Explorer


Theorem sdrgid

Description: Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis sdrgid.1 B = Base R
Assertion sdrgid R DivRing B SubDRing R

Proof

Step Hyp Ref Expression
1 sdrgid.1 B = Base R
2 id R DivRing R DivRing
3 drngring R DivRing R Ring
4 1 subrgid R Ring B SubRing R
5 3 4 syl R DivRing B SubRing R
6 1 ressid R DivRing R 𝑠 B = R
7 6 2 eqeltrd R DivRing R 𝑠 B DivRing
8 issdrg B SubDRing R R DivRing B SubRing R R 𝑠 B DivRing
9 2 5 7 8 syl3anbrc R DivRing B SubDRing R