Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Subrings of a ring
Sub-division rings
issdrg
Next ⟩
sdrgid
Metamath Proof Explorer
Ascii
Unicode
Theorem
issdrg
Description:
Property of a division subring.
(Contributed by
Stefan O'Rear
, 3-Oct-2015)
Ref
Expression
Assertion
issdrg
⊢
S
∈
SubDRing
⁡
R
↔
R
∈
DivRing
∧
S
∈
SubRing
⁡
R
∧
R
↾
𝑠
S
∈
DivRing
Proof
Step
Hyp
Ref
Expression
1
df-sdrg
⊢
SubDRing
=
w
∈
DivRing
⟼
s
∈
SubRing
⁡
w
|
w
↾
𝑠
s
∈
DivRing
2
1
mptrcl
⊢
S
∈
SubDRing
⁡
R
→
R
∈
DivRing
3
fveq2
⊢
w
=
R
→
SubRing
⁡
w
=
SubRing
⁡
R
4
oveq1
⊢
w
=
R
→
w
↾
𝑠
s
=
R
↾
𝑠
s
5
4
eleq1d
⊢
w
=
R
→
w
↾
𝑠
s
∈
DivRing
↔
R
↾
𝑠
s
∈
DivRing
6
3
5
rabeqbidv
⊢
w
=
R
→
s
∈
SubRing
⁡
w
|
w
↾
𝑠
s
∈
DivRing
=
s
∈
SubRing
⁡
R
|
R
↾
𝑠
s
∈
DivRing
7
fvex
⊢
SubRing
⁡
R
∈
V
8
7
rabex
⊢
s
∈
SubRing
⁡
R
|
R
↾
𝑠
s
∈
DivRing
∈
V
9
6
1
8
fvmpt
⊢
R
∈
DivRing
→
SubDRing
⁡
R
=
s
∈
SubRing
⁡
R
|
R
↾
𝑠
s
∈
DivRing
10
9
eleq2d
⊢
R
∈
DivRing
→
S
∈
SubDRing
⁡
R
↔
S
∈
s
∈
SubRing
⁡
R
|
R
↾
𝑠
s
∈
DivRing
11
oveq2
⊢
s
=
S
→
R
↾
𝑠
s
=
R
↾
𝑠
S
12
11
eleq1d
⊢
s
=
S
→
R
↾
𝑠
s
∈
DivRing
↔
R
↾
𝑠
S
∈
DivRing
13
12
elrab
⊢
S
∈
s
∈
SubRing
⁡
R
|
R
↾
𝑠
s
∈
DivRing
↔
S
∈
SubRing
⁡
R
∧
R
↾
𝑠
S
∈
DivRing
14
10
13
bitrdi
⊢
R
∈
DivRing
→
S
∈
SubDRing
⁡
R
↔
S
∈
SubRing
⁡
R
∧
R
↾
𝑠
S
∈
DivRing
15
2
14
biadanii
⊢
S
∈
SubDRing
⁡
R
↔
R
∈
DivRing
∧
S
∈
SubRing
⁡
R
∧
R
↾
𝑠
S
∈
DivRing
16
3anass
⊢
R
∈
DivRing
∧
S
∈
SubRing
⁡
R
∧
R
↾
𝑠
S
∈
DivRing
↔
R
∈
DivRing
∧
S
∈
SubRing
⁡
R
∧
R
↾
𝑠
S
∈
DivRing
17
15
16
bitr4i
⊢
S
∈
SubDRing
⁡
R
↔
R
∈
DivRing
∧
S
∈
SubRing
⁡
R
∧
R
↾
𝑠
S
∈
DivRing