Metamath Proof Explorer


Theorem issdrg

Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015)

Ref Expression
Assertion issdrg S SubDRing R R DivRing S SubRing R R 𝑠 S DivRing

Proof

Step Hyp Ref Expression
1 df-sdrg SubDRing = w DivRing s SubRing w | w 𝑠 s DivRing
2 1 mptrcl S SubDRing R R DivRing
3 fveq2 w = R SubRing w = SubRing R
4 oveq1 w = R w 𝑠 s = R 𝑠 s
5 4 eleq1d w = R w 𝑠 s DivRing R 𝑠 s DivRing
6 3 5 rabeqbidv w = R s SubRing w | w 𝑠 s DivRing = s SubRing R | R 𝑠 s DivRing
7 fvex SubRing R V
8 7 rabex s SubRing R | R 𝑠 s DivRing V
9 6 1 8 fvmpt R DivRing SubDRing R = s SubRing R | R 𝑠 s DivRing
10 9 eleq2d R DivRing S SubDRing R S s SubRing R | R 𝑠 s DivRing
11 oveq2 s = S R 𝑠 s = R 𝑠 S
12 11 eleq1d s = S R 𝑠 s DivRing R 𝑠 S DivRing
13 12 elrab S s SubRing R | R 𝑠 s DivRing S SubRing R R 𝑠 S DivRing
14 10 13 syl6bb R DivRing S SubDRing R S SubRing R R 𝑠 S DivRing
15 2 14 biadanii S SubDRing R R DivRing S SubRing R R 𝑠 S DivRing
16 3anass R DivRing S SubRing R R 𝑠 S DivRing R DivRing S SubRing R R 𝑠 S DivRing
17 15 16 bitr4i S SubDRing R R DivRing S SubRing R R 𝑠 S DivRing