Metamath Proof Explorer


Theorem issdrg

Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015)

Ref Expression
Assertion issdrg SSubDRingRRDivRingSSubRingRR𝑠SDivRing

Proof

Step Hyp Ref Expression
1 df-sdrg SubDRing=wDivRingsSubRingw|w𝑠sDivRing
2 1 mptrcl SSubDRingRRDivRing
3 fveq2 w=RSubRingw=SubRingR
4 oveq1 w=Rw𝑠s=R𝑠s
5 4 eleq1d w=Rw𝑠sDivRingR𝑠sDivRing
6 3 5 rabeqbidv w=RsSubRingw|w𝑠sDivRing=sSubRingR|R𝑠sDivRing
7 fvex SubRingRV
8 7 rabex sSubRingR|R𝑠sDivRingV
9 6 1 8 fvmpt RDivRingSubDRingR=sSubRingR|R𝑠sDivRing
10 9 eleq2d RDivRingSSubDRingRSsSubRingR|R𝑠sDivRing
11 oveq2 s=SR𝑠s=R𝑠S
12 11 eleq1d s=SR𝑠sDivRingR𝑠SDivRing
13 12 elrab SsSubRingR|R𝑠sDivRingSSubRingRR𝑠SDivRing
14 10 13 bitrdi RDivRingSSubDRingRSSubRingRR𝑠SDivRing
15 2 14 biadanii SSubDRingRRDivRingSSubRingRR𝑠SDivRing
16 3anass RDivRingSSubRingRR𝑠SDivRingRDivRingSSubRingRR𝑠SDivRing
17 15 16 bitr4i SSubDRingRRDivRingSSubRingRR𝑠SDivRing