Step |
Hyp |
Ref |
Expression |
1 |
|
df-sdrg |
⊢ SubDRing = ( 𝑤 ∈ DivRing ↦ { 𝑠 ∈ ( SubRing ‘ 𝑤 ) ∣ ( 𝑤 ↾s 𝑠 ) ∈ DivRing } ) |
2 |
1
|
mptrcl |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) → 𝑅 ∈ DivRing ) |
3 |
|
fveq2 |
⊢ ( 𝑤 = 𝑅 → ( SubRing ‘ 𝑤 ) = ( SubRing ‘ 𝑅 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑤 = 𝑅 → ( 𝑤 ↾s 𝑠 ) = ( 𝑅 ↾s 𝑠 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑤 = 𝑅 → ( ( 𝑤 ↾s 𝑠 ) ∈ DivRing ↔ ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) ) |
6 |
3 5
|
rabeqbidv |
⊢ ( 𝑤 = 𝑅 → { 𝑠 ∈ ( SubRing ‘ 𝑤 ) ∣ ( 𝑤 ↾s 𝑠 ) ∈ DivRing } = { 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ DivRing } ) |
7 |
|
fvex |
⊢ ( SubRing ‘ 𝑅 ) ∈ V |
8 |
7
|
rabex |
⊢ { 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ DivRing } ∈ V |
9 |
6 1 8
|
fvmpt |
⊢ ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) = { 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ DivRing } ) |
10 |
9
|
eleq2d |
⊢ ( 𝑅 ∈ DivRing → ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ 𝑆 ∈ { 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ DivRing } ) ) |
11 |
|
oveq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝑅 ↾s 𝑠 ) = ( 𝑅 ↾s 𝑆 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑅 ↾s 𝑠 ) ∈ DivRing ↔ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ) |
13 |
12
|
elrab |
⊢ ( 𝑆 ∈ { 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ DivRing } ↔ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ) |
14 |
10 13
|
bitrdi |
⊢ ( 𝑅 ∈ DivRing → ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ) ) |
15 |
2 14
|
biadanii |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ) ) |
16 |
|
3anass |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ↔ ( 𝑅 ∈ DivRing ∧ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ) ) |
17 |
15 16
|
bitr4i |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ) |