Step |
Hyp |
Ref |
Expression |
1 |
|
issdrg2.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
2 |
|
issdrg2.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
issdrg |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ) |
4 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
5 |
4 2 1
|
issubdrg |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( 𝑅 ↾s 𝑆 ) ∈ DivRing ↔ ∀ 𝑥 ∈ ( 𝑆 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
6 |
5
|
pm5.32i |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ↔ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝑆 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
7 |
|
df-3an |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ↔ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ) |
8 |
|
df-3an |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑆 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝑆 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
9 |
6 7 8
|
3bitr4i |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑆 ) ∈ DivRing ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑆 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
10 |
3 9
|
bitri |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( 𝑆 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |