Metamath Proof Explorer


Theorem issdrg2

Description: Property of a division subring (closure version). (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses issdrg2.i I = inv r R
issdrg2.z 0 ˙ = 0 R
Assertion issdrg2 S SubDRing R R DivRing S SubRing R x S 0 ˙ I x S

Proof

Step Hyp Ref Expression
1 issdrg2.i I = inv r R
2 issdrg2.z 0 ˙ = 0 R
3 issdrg S SubDRing R R DivRing S SubRing R R 𝑠 S DivRing
4 eqid R 𝑠 S = R 𝑠 S
5 4 2 1 issubdrg R DivRing S SubRing R R 𝑠 S DivRing x S 0 ˙ I x S
6 5 pm5.32i R DivRing S SubRing R R 𝑠 S DivRing R DivRing S SubRing R x S 0 ˙ I x S
7 df-3an R DivRing S SubRing R R 𝑠 S DivRing R DivRing S SubRing R R 𝑠 S DivRing
8 df-3an R DivRing S SubRing R x S 0 ˙ I x S R DivRing S SubRing R x S 0 ˙ I x S
9 6 7 8 3bitr4i R DivRing S SubRing R R 𝑠 S DivRing R DivRing S SubRing R x S 0 ˙ I x S
10 3 9 bitri S SubDRing R R DivRing S SubRing R x S 0 ˙ I x S