Metamath Proof Explorer


Theorem issdrg2

Description: Property of a division subring (closure version). (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses issdrg2.i I=invrR
issdrg2.z 0˙=0R
Assertion issdrg2 SSubDRingRRDivRingSSubRingRxS0˙IxS

Proof

Step Hyp Ref Expression
1 issdrg2.i I=invrR
2 issdrg2.z 0˙=0R
3 issdrg SSubDRingRRDivRingSSubRingRR𝑠SDivRing
4 eqid R𝑠S=R𝑠S
5 4 2 1 issubdrg RDivRingSSubRingRR𝑠SDivRingxS0˙IxS
6 5 pm5.32i RDivRingSSubRingRR𝑠SDivRingRDivRingSSubRingRxS0˙IxS
7 df-3an RDivRingSSubRingRR𝑠SDivRingRDivRingSSubRingRR𝑠SDivRing
8 df-3an RDivRingSSubRingRxS0˙IxSRDivRingSSubRingRxS0˙IxS
9 6 7 8 3bitr4i RDivRingSSubRingRR𝑠SDivRingRDivRingSSubRingRxS0˙IxS
10 3 9 bitri SSubDRingRRDivRingSSubRingRxS0˙IxS