| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubdrg.s |  | 
						
							| 2 |  | issubdrg.z |  | 
						
							| 3 |  | issubdrg.i |  | 
						
							| 4 |  | simpllr |  | 
						
							| 5 | 1 | subrgring |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 |  | eldifsn |  | 
						
							| 9 | 7 8 | sylib |  | 
						
							| 10 | 9 | simpld |  | 
						
							| 11 | 1 | subrgbas |  | 
						
							| 12 | 4 11 | syl |  | 
						
							| 13 | 10 12 | eleqtrd |  | 
						
							| 14 | 9 | simprd |  | 
						
							| 15 | 1 2 | subrg0 |  | 
						
							| 16 | 4 15 | syl |  | 
						
							| 17 | 14 16 | neeqtrd |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 18 19 20 | drngunit |  | 
						
							| 22 | 21 | ad2antlr |  | 
						
							| 23 | 13 17 22 | mpbir2and |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 19 24 18 | ringinvcl |  | 
						
							| 26 | 6 23 25 | syl2anc |  | 
						
							| 27 | 1 3 19 24 | subrginv |  | 
						
							| 28 | 4 23 27 | syl2anc |  | 
						
							| 29 | 26 28 12 | 3eltr4d |  | 
						
							| 30 | 29 | ralrimiva |  | 
						
							| 31 | 5 | ad2antlr |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 1 32 19 | subrguss |  | 
						
							| 34 | 33 | ad2antlr |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 35 32 2 | isdrng |  | 
						
							| 37 | 36 | simprbi |  | 
						
							| 38 | 37 | ad2antrr |  | 
						
							| 39 | 34 38 | sseqtrd |  | 
						
							| 40 | 18 19 | unitss |  | 
						
							| 41 | 11 | ad2antlr |  | 
						
							| 42 | 40 41 | sseqtrrid |  | 
						
							| 43 | 39 42 | ssind |  | 
						
							| 44 | 35 | subrgss |  | 
						
							| 45 | 44 | ad2antlr |  | 
						
							| 46 |  | difin2 |  | 
						
							| 47 | 45 46 | syl |  | 
						
							| 48 | 43 47 | sseqtrrd |  | 
						
							| 49 | 44 | ad2antlr |  | 
						
							| 50 |  | simprl |  | 
						
							| 51 | 50 8 | sylib |  | 
						
							| 52 | 51 | simpld |  | 
						
							| 53 | 49 52 | sseldd |  | 
						
							| 54 | 51 | simprd |  | 
						
							| 55 | 35 32 2 | drngunit |  | 
						
							| 56 | 55 | ad2antrr |  | 
						
							| 57 | 53 54 56 | mpbir2and |  | 
						
							| 58 |  | simprr |  | 
						
							| 59 | 1 32 19 3 | subrgunit |  | 
						
							| 60 | 59 | ad2antlr |  | 
						
							| 61 | 57 52 58 60 | mpbir3and |  | 
						
							| 62 | 61 | expr |  | 
						
							| 63 | 62 | ralimdva |  | 
						
							| 64 | 63 | imp |  | 
						
							| 65 |  | dfss3 |  | 
						
							| 66 | 64 65 | sylibr |  | 
						
							| 67 | 48 66 | eqssd |  | 
						
							| 68 | 15 | ad2antlr |  | 
						
							| 69 | 68 | sneqd |  | 
						
							| 70 | 41 69 | difeq12d |  | 
						
							| 71 | 67 70 | eqtrd |  | 
						
							| 72 | 18 19 20 | isdrng |  | 
						
							| 73 | 31 71 72 | sylanbrc |  | 
						
							| 74 | 30 73 | impbida |  |