| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubdrg.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
|
issubdrg.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
issubdrg.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 4 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
| 5 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 6 |
4 5
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑆 ∈ Ring ) |
| 7 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) |
| 8 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) |
| 10 |
9
|
simpld |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ 𝐴 ) |
| 11 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 12 |
4 11
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 13 |
10 12
|
eleqtrd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 14 |
9
|
simprd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 15 |
1 2
|
subrg0 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 0 = ( 0g ‘ 𝑆 ) ) |
| 16 |
4 15
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 0 = ( 0g ‘ 𝑆 ) ) |
| 17 |
14 16
|
neeqtrd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ≠ ( 0g ‘ 𝑆 ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 19 |
|
eqid |
⊢ ( Unit ‘ 𝑆 ) = ( Unit ‘ 𝑆 ) |
| 20 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 21 |
18 19 20
|
drngunit |
⊢ ( 𝑆 ∈ DivRing → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) ) |
| 23 |
13 17 22
|
mpbir2and |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
| 24 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
| 25 |
19 24 18
|
ringinvcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ ( Unit ‘ 𝑆 ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 26 |
6 23 25
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 27 |
1 3 19 24
|
subrginv |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Unit ‘ 𝑆 ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
| 28 |
4 23 27
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
| 29 |
26 28 12
|
3eltr4d |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) |
| 30 |
29
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) → ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) |
| 31 |
5
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝑆 ∈ Ring ) |
| 32 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 33 |
1 32 19
|
subrguss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Unit ‘ 𝑆 ) ⊆ ( Unit ‘ 𝑅 ) ) |
| 34 |
33
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( Unit ‘ 𝑅 ) ) |
| 35 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 36 |
35 32 2
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) ) |
| 37 |
36
|
simprbi |
⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
| 39 |
34 38
|
sseqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
| 40 |
18 19
|
unitss |
⊢ ( Unit ‘ 𝑆 ) ⊆ ( Base ‘ 𝑆 ) |
| 41 |
11
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 42 |
40 41
|
sseqtrrid |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ 𝐴 ) |
| 43 |
39 42
|
ssind |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ∩ 𝐴 ) ) |
| 44 |
35
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 45 |
44
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 46 |
|
difin2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) → ( 𝐴 ∖ { 0 } ) = ( ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ∩ 𝐴 ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐴 ∖ { 0 } ) = ( ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ∩ 𝐴 ) ) |
| 48 |
43 47
|
sseqtrrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( 𝐴 ∖ { 0 } ) ) |
| 49 |
44
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 50 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) |
| 51 |
50 8
|
sylib |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) |
| 52 |
51
|
simpld |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 53 |
49 52
|
sseldd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 54 |
51
|
simprd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ≠ 0 ) |
| 55 |
35 32 2
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ 0 ) ) ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ 0 ) ) ) |
| 57 |
53 54 56
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
| 58 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) |
| 59 |
1 32 19 3
|
subrgunit |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 60 |
59
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 61 |
57 52 58 60
|
mpbir3and |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
| 62 |
61
|
expr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 → 𝑥 ∈ ( Unit ‘ 𝑆 ) ) ) |
| 63 |
62
|
ralimdva |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) 𝑥 ∈ ( Unit ‘ 𝑆 ) ) ) |
| 64 |
63
|
imp |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
| 65 |
|
dfss3 |
⊢ ( ( 𝐴 ∖ { 0 } ) ⊆ ( Unit ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
| 66 |
64 65
|
sylibr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐴 ∖ { 0 } ) ⊆ ( Unit ‘ 𝑆 ) ) |
| 67 |
48 66
|
eqssd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) = ( 𝐴 ∖ { 0 } ) ) |
| 68 |
15
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 0 = ( 0g ‘ 𝑆 ) ) |
| 69 |
68
|
sneqd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → { 0 } = { ( 0g ‘ 𝑆 ) } ) |
| 70 |
41 69
|
difeq12d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐴 ∖ { 0 } ) = ( ( Base ‘ 𝑆 ) ∖ { ( 0g ‘ 𝑆 ) } ) ) |
| 71 |
67 70
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) = ( ( Base ‘ 𝑆 ) ∖ { ( 0g ‘ 𝑆 ) } ) ) |
| 72 |
18 19 20
|
isdrng |
⊢ ( 𝑆 ∈ DivRing ↔ ( 𝑆 ∈ Ring ∧ ( Unit ‘ 𝑆 ) = ( ( Base ‘ 𝑆 ) ∖ { ( 0g ‘ 𝑆 ) } ) ) ) |
| 73 |
31 71 72
|
sylanbrc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝑆 ∈ DivRing ) |
| 74 |
30 73
|
impbida |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑆 ∈ DivRing ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) |