| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgugrp.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
|
subrgugrp.2 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
subrgugrp.3 |
⊢ 𝑉 = ( Unit ‘ 𝑆 ) |
| 4 |
|
subrgunit.4 |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 5 |
1 2 3
|
subrguss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ⊆ 𝑈 ) |
| 6 |
5
|
sselda |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑈 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 8 |
7 3
|
unitcl |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 10 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 12 |
9 11
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝐴 ) |
| 13 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 14 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
| 15 |
3 14 7
|
ringinvcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 16 |
13 15
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 17 |
1 4 3 14
|
subrginv |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑋 ) ) |
| 18 |
16 17 11
|
3eltr4d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) |
| 19 |
6 12 18
|
3jca |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) |
| 20 |
|
simpr2 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ∈ 𝐴 ) |
| 21 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 22 |
20 21
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 23 |
|
simpr3 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) |
| 24 |
23 21
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 25 |
|
eqid |
⊢ ( ∥r ‘ 𝑆 ) = ( ∥r ‘ 𝑆 ) |
| 26 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 27 |
7 25 26
|
dvdsrmul |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → 𝑋 ( ∥r ‘ 𝑆 ) ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) ) |
| 28 |
22 24 27
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ( ∥r ‘ 𝑆 ) ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) ) |
| 29 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑅 ∈ Ring ) |
| 31 |
|
simpr1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ∈ 𝑈 ) |
| 32 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 33 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 34 |
2 4 32 33
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 35 |
30 31 34
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 36 |
1 32
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 38 |
37
|
oveqd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) ) |
| 39 |
1 33
|
subrg1 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 41 |
35 38 40
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) = ( 1r ‘ 𝑆 ) ) |
| 42 |
28 41
|
breqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) |
| 43 |
|
eqid |
⊢ ( oppr ‘ 𝑆 ) = ( oppr ‘ 𝑆 ) |
| 44 |
43 7
|
opprbas |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( oppr ‘ 𝑆 ) ) |
| 45 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑆 ) ) = ( ∥r ‘ ( oppr ‘ 𝑆 ) ) |
| 46 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑆 ) ) = ( .r ‘ ( oppr ‘ 𝑆 ) ) |
| 47 |
44 45 46
|
dvdsrmul |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑋 ) ) |
| 48 |
22 24 47
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑋 ) ) |
| 49 |
7 26 43 46
|
opprmul |
⊢ ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑋 ) = ( 𝑋 ( .r ‘ 𝑆 ) ( 𝐼 ‘ 𝑋 ) ) |
| 50 |
2 4 32 33
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 51 |
30 31 50
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 52 |
37
|
oveqd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝑋 ( .r ‘ 𝑆 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 53 |
51 52 40
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝑆 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑆 ) ) |
| 54 |
49 53
|
eqtrid |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → ( ( 𝐼 ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑆 ) ) 𝑋 ) = ( 1r ‘ 𝑆 ) ) |
| 55 |
48 54
|
breqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) |
| 56 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 57 |
3 56 25 43 45
|
isunit |
⊢ ( 𝑋 ∈ 𝑉 ↔ ( 𝑋 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
| 58 |
42 55 57
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) → 𝑋 ∈ 𝑉 ) |
| 59 |
19 58
|
impbida |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑋 ∈ 𝑉 ↔ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) ) ) |