| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgugrp.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
|
subrgugrp.2 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
subrgugrp.3 |
⊢ 𝑉 = ( Unit ‘ 𝑆 ) |
| 4 |
|
subrgugrp.4 |
⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) |
| 5 |
1 2 3
|
subrguss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ⊆ 𝑈 ) |
| 6 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 7 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 8 |
3 7
|
1unit |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ 𝑉 ) |
| 9 |
|
ne0i |
⊢ ( ( 1r ‘ 𝑆 ) ∈ 𝑉 → 𝑉 ≠ ∅ ) |
| 10 |
6 8 9
|
3syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ≠ ∅ ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 12 |
1 11
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 14 |
13
|
oveqd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ) |
| 15 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 16 |
3 15
|
unitmulcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
| 17 |
6 16
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
| 18 |
14 17
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ) |
| 19 |
18
|
3expa |
⊢ ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ) |
| 20 |
19
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ) |
| 21 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 22 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
| 23 |
1 21 3 22
|
subrginv |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
| 24 |
3 22
|
unitinvcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ 𝑉 ) |
| 25 |
6 24
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ 𝑉 ) |
| 26 |
23 25
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) |
| 27 |
20 26
|
jca |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) ) |
| 28 |
27
|
ralrimiva |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ∀ 𝑥 ∈ 𝑉 ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) ) |
| 29 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 30 |
2 4
|
unitgrp |
⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Grp ) |
| 31 |
2 4
|
unitgrpbas |
⊢ 𝑈 = ( Base ‘ 𝐺 ) |
| 32 |
2
|
fvexi |
⊢ 𝑈 ∈ V |
| 33 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 34 |
33 11
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 35 |
4 34
|
ressplusg |
⊢ ( 𝑈 ∈ V → ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) ) |
| 36 |
32 35
|
ax-mp |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) |
| 37 |
2 4 21
|
invrfval |
⊢ ( invr ‘ 𝑅 ) = ( invg ‘ 𝐺 ) |
| 38 |
31 36 37
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑉 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑉 ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) ) ) ) |
| 39 |
29 30 38
|
3syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑉 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑉 ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) ) ) ) |
| 40 |
5 10 28 39
|
mpbir3and |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ∈ ( SubGrp ‘ 𝐺 ) ) |