| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgugrp.1 |
|- S = ( R |`s A ) |
| 2 |
|
subrgugrp.2 |
|- U = ( Unit ` R ) |
| 3 |
|
subrgugrp.3 |
|- V = ( Unit ` S ) |
| 4 |
|
subrgugrp.4 |
|- G = ( ( mulGrp ` R ) |`s U ) |
| 5 |
1 2 3
|
subrguss |
|- ( A e. ( SubRing ` R ) -> V C_ U ) |
| 6 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 7 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 8 |
3 7
|
1unit |
|- ( S e. Ring -> ( 1r ` S ) e. V ) |
| 9 |
|
ne0i |
|- ( ( 1r ` S ) e. V -> V =/= (/) ) |
| 10 |
6 8 9
|
3syl |
|- ( A e. ( SubRing ` R ) -> V =/= (/) ) |
| 11 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 12 |
1 11
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( .r ` R ) = ( .r ` S ) ) |
| 14 |
13
|
oveqd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( x ( .r ` R ) y ) = ( x ( .r ` S ) y ) ) |
| 15 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 16 |
3 15
|
unitmulcl |
|- ( ( S e. Ring /\ x e. V /\ y e. V ) -> ( x ( .r ` S ) y ) e. V ) |
| 17 |
6 16
|
syl3an1 |
|- ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( x ( .r ` S ) y ) e. V ) |
| 18 |
14 17
|
eqeltrd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( x ( .r ` R ) y ) e. V ) |
| 19 |
18
|
3expa |
|- ( ( ( A e. ( SubRing ` R ) /\ x e. V ) /\ y e. V ) -> ( x ( .r ` R ) y ) e. V ) |
| 20 |
19
|
ralrimiva |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> A. y e. V ( x ( .r ` R ) y ) e. V ) |
| 21 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 22 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
| 23 |
1 21 3 22
|
subrginv |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` R ) ` x ) = ( ( invr ` S ) ` x ) ) |
| 24 |
3 22
|
unitinvcl |
|- ( ( S e. Ring /\ x e. V ) -> ( ( invr ` S ) ` x ) e. V ) |
| 25 |
6 24
|
sylan |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` S ) ` x ) e. V ) |
| 26 |
23 25
|
eqeltrd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` R ) ` x ) e. V ) |
| 27 |
20 26
|
jca |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) |
| 28 |
27
|
ralrimiva |
|- ( A e. ( SubRing ` R ) -> A. x e. V ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) |
| 29 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
| 30 |
2 4
|
unitgrp |
|- ( R e. Ring -> G e. Grp ) |
| 31 |
2 4
|
unitgrpbas |
|- U = ( Base ` G ) |
| 32 |
2
|
fvexi |
|- U e. _V |
| 33 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 34 |
33 11
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 35 |
4 34
|
ressplusg |
|- ( U e. _V -> ( .r ` R ) = ( +g ` G ) ) |
| 36 |
32 35
|
ax-mp |
|- ( .r ` R ) = ( +g ` G ) |
| 37 |
2 4 21
|
invrfval |
|- ( invr ` R ) = ( invg ` G ) |
| 38 |
31 36 37
|
issubg2 |
|- ( G e. Grp -> ( V e. ( SubGrp ` G ) <-> ( V C_ U /\ V =/= (/) /\ A. x e. V ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) ) ) |
| 39 |
29 30 38
|
3syl |
|- ( A e. ( SubRing ` R ) -> ( V e. ( SubGrp ` G ) <-> ( V C_ U /\ V =/= (/) /\ A. x e. V ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) ) ) |
| 40 |
5 10 28 39
|
mpbir3and |
|- ( A e. ( SubRing ` R ) -> V e. ( SubGrp ` G ) ) |